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ABSTRACT 
 

The relation between stress and strain in real solids can be strongly nonlinear at large deformation 
near a crack tip. Many existing theories of fracture neglect such hyperelasticity behavior and instead assume a 
linear elastic stress-strain law. We have previously investigated the role of hyperelasticity in intersonic mode 
I and supersonic mode II crack motion (Buehler et al., Nature, 2003). In the present study, we focus on the 
effect of hyperelasticity on dynamical crack tip instabilities. Using a series of large-scale atomistic 
simulations involving millions of atoms, we show that hyperelasticity can also play a governing role in 
dynamical crack tip instability. The classical linear elastic theories can not describe crack dynamics in real 
materials which often show a softening hyperelastic effect. Our numerical experiments reveal that 
hyperelastic material properties have a significant influence on instability dynamics. We illustrate that the 
hyperelastic effects can be understood with an energy-flow induced instability (Gao et al., 1996) that 
competes with Yoffe’s classical deformation field controlled mechanism (Yoffe, 1951). Which phenomenon 
dominates depends on the strength of the softening effect and could be directly linked to interatomic potential 
parameters that describe the amount of softening near the moving crack. If the hyperelastic softening is small, 
energy flow plays a minor role and the instability dynamics is largely deformation field controlled. If, on the 
other hand, the hyperelastic softening region is large, energy flux controls the instability dynamics. In this 
paper we attempt, for the first time, a unified treatment of the instability problem with a transition from 
energy flow controlled mechanism (Gao model) to deformation field controlled mechanism (Yoffe model).  
 

1. INTRODUCTION 
 

The dynamics of cracking is a fundamental problem in the field of materials failure under 
extreme conditions [1-4]. How do cracks evolve, and what is the underlying atomic mechanism? 
How does the shape of the interatomic potential affect the dynamics of cracking [4-6]? These are 
some of the questions we address in the present study. It was observed that the crack face 
morphology changes as the crack speed increases, a phenomenon also referred to as dynamical 
instability of cracks [2-4]. Up to a critical speed, the crack surface is atomically flat (mirror). At 
higher speeds the crack starts to roughen (mist) and eventually becomes very rough (hackle). The 
dynamical crack tip instability has received significant attention in the past 50 years. Yoffe 
reported in 1951 the solution of a steadily translating mode I crack [1]. The Yoffe solution 
suggested that the crack should branch at a critical speed of about 73 % of the Rayleigh wave 
speed, as the circumferential hoop stress exhibits a maximum at an inclined cleavage plane for 
high crack speeds. However, experiments have shown that the critical instability speed is much 
lower in real materials. In 1992, Fineberg et al. [2] observed an instability speed at about 1/3 of 
Rayleigh wave speed, which significantly deviates from Yoffe’s theory! Similar instability 
dynamics with a mirror-mist-hackle transition at about 1/3 of the Rayleigh-wave speed was 
observed in the large-scale MD simulations of Abraham and coworkers [4].   

Gao [5] attempted to explain the discrepancy between theory, experiment and simulation 
based on the concept of hyperelasticity where the main argument for reduced instability speed was 
that the atomic bonding in real materials softens with increasing strain. A nonlinear continuum 
mechanics analysis suggests that the softening leads to reduced instability speed. Figure 1 
illustrates the concept of hyperelasticity in contrast to linear elastic behaviour.  



The hyperelastic effects can significantly modify the classical Yoffe picture: In the linear 
elastic Yoffe model [1], a purely deformation field approach is taken in that changes in stress 
distribution close to the crack tip determines the critical conditions for the onset of instability. On 
the other hand, Gao’s model [5] is focused on the change of local wave speed close to a crack tip. 
Because of the large deformation induced softening near the crack tip, both the local stress and the 
energy flow field are altered. The reduction in energy flow can be understood based on the lower 
local wave velocities. If the crack speed moves faster than the speed of local energy flow, the 
crack motion could become unstable!  

More recently, hyperelasticity has also been discussed in association with intersonic and 
supersonic fracture along a weak layer in an elastically stiffening solid [6]. Simulations have 
shown intersonic mode I and supersonic mode II cracking [6]; the former has also been verified in 
experiment [7]. 
 

 

Figure 1: Schematic comparison of linear 
elastic stress-strain behavior with 
hyperelastic softening.  Despite most real 
materials show a significant hyperelastic 
effect, this is completely neglected in most 
existing theories of fracture. This paper 
addresses the question if failure to include 
this concept into modeling could explain 
the discrepancies of theory, experiment and 
simulation. 

Despite important progress in the past, the existing literature does not provide a 
satisfactory explanation of the role of hyperelastic effects in the instability dynamics of fracture. 
There is still a lack of understanding on the transition from the linear elastic Yoffe model [1] to 
Gao’s hyperelastic model [5]. In most computational work, the analysis was performed only for a 
single potential, such as done for a LJ potential by Abraham et al. [4]. There have been no 
systematic numerical studies based on continuously varying potential parameters that would focus 
on the prediction of Gao’s model versus that of the Yoffe model.   

In the present work, we conduct a systematic parameter study via large-scale molecular 
dynamics simulations. An interatomic potential that allows a systematic transition from linear 
elastic to strongly nonlinear materials behavior is adopted to bridge different existing theories and 
determine the conditions of their validity.  

The outline of this paper is as follows. By systematically changing the large-strain elastic 
properties while keeping the small-strain elastic properties constant, and thus tuning the strength of 
the hyperelastic effect, we will determine the conditions when the elasticity of large strains 
governs the instability dynamics of cracks. Linear elastic materials serve as reference systems for 
our studies, where we find that the instability speed agrees well with the predicted value from 
Yoffe's linear analysis [1]. Our results suggest that changing the strength of hyperelastic effect 
allows tuning the instability speed. If the hyperelastic softening region is very small, energy flow 
plays a minor role and the instability dynamics is largely deformation field controlled. If, on the 
other hand, the hyperelastic softening region is large, energy flux controls the instability dynamics. 
In this paper, we achieve, for the first time, a unified treatment of the instability problem. A simple 
analytical model provides quantitative estimates on the instability speed in our model system and 
explains the transition from Gao’s to Yoffe’s model. 



 

 
Figure 2: Slab geometry used for 
the numerical studies of instability 
dynamics of cracks. The crack is 
oriented such that it propagates 

along the direction of low fracture 
surface energy. 

 
2. SIMULATION METHOD AND ATOMISTIC MODEL 

 
We consider a crack in a two-dimensional geometry with slab width xl . The crack 

propagates in a triangular hexagonal lattice along the direction of lowest surface energy (for details 
see [6]). We adopt a harmonic interatomic potential with spring constant 0k  in combination with a 
smooth cutoff of the force based on the Fermi-Dirac (F-D) distribution function to describe bond 
breaking. The force versus atomic separation is then given by 
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The parameter 12246.10 ≈r  refers to the nearest neighbor spacing of atoms. Assuming that the 

spring constant 0k  is fixed, the potential has two parameters, breakr  and Ξ . The parameter breakr   
(corresponding to the Fermi energy in the F-D-function) denotes the critical separation for 
breaking of the atomic bonds and allows tuning the breaking strain as well as the cohesive stress at 
breaking of bonds ( drdcoh /φσ ∝ ). The parameter Ξ   (corresponding to the temperature in the 
F-D-function) describes the amount of smoothing at the breaking. For small values of Ξ  (around 
50), the softening effect is quite large. For large values of Ξ , the region of softening becomes 
very small, and the solid behaves like one with snapping bonds (as used in [6]). Figure 3 depicts 
the interatomic potential used for the calculations (showing force versus atomic separation given 
by eqn. (1)). This model serves as a simplistic model of hyperelasticity common to a large class of 
real materials, as it allows a systematic variation of the cohesive stress and the amount of softening 
at bond breaking [6]. Further details of the potential will be published elsewhere. 
 

3. HYPERELASTICITY GOVERNS CRACK TIP INSTABILITIES 
 
We have carried out a series of numerical experiments by systematically varying the 

potential parameters breakr  and Ξ . In this short paper, we may only summarize the main findings 
of our work. The first important result is that cracks in homogeneous materials with linear elastic 
properties (harmonic potential, achieved by setting Ξ  to infinity) show a critical instability speed 
of about 73 % cR, independent of the choice of breakr . This is in agreement with the prediction by 
linear elastic theory [1]. We also find that the occurrence of the instability can be correlated with 
the development of a bimodal hoop stress as proposed by Yoffe [1].  

 



 
 

Figure 3: The interatomic potential (showing force versus atomic separation) used for the 
calculations. The potential has two parameters, breakr  and Ξ . The parameter breakr  denotes the 

critical separation for breaking of the atomic bonds. The parameter Ξ   gives the amount of 
smoothing at the breaking. The parameter breakr  is used to adjust the breaking stress, whereas 
the parameter Ξ  is used to control the softening behavior near the crack tip. For small values 

of Ξ , the soft region is rather large, and the potential approaches the shape of a LJ-type 
interatomic potential. For large values of Ξ , the region of softening is very small, and the solid 

behaves much like one with snapping bonds. Note that drdcoh /φσ ∝ . 
 

How does crack dynamics change once significant softening at the crack tip is 
introduced? To assess the dependence of crack instability dynamics on the large-strain properties 
of the interatomic potential, we systematically vary the parameters breakr  and Ξ , and compare the 
instability speed with the predictions by Gao’s model and Yoffe’s model. We observe that the 
instability speed is in between the prediction by Gao’s model and the prediction by Yoffe’s model. 
How much it deviates from the different models depends on the choice of breakr  and Ξ . We find 
that the deviation from Gao’s model vanishes for smaller values of Ξ , and the results approach 
Yoffe’s model for large values of Ξ . For small value of Ξ , we further find that the instability 
speed depends on the cohesive stress, which is an important feature of Gao’s model. In fact, we 
observe that the first derivative of the instability speed with respect to the cohesive stress agrees 
reasonably well in Gao’s model and our MD simulations. This suggests that for small values of 
Ξ , the two results differ only by a constant parameter. 

Therefore, we introduce an additional parameter, the shift velocity )(Ξshiftv , to obtain 
quantitative predictions of the instability speed. In terms of physical interpretation, the shift 
parameter accounts for the strength of hyperelastic softening. Gao’s model corresponds to the 
limiting case when the softening region size is large, and it therefore constitutes a lower limit for 
the instability speed [5].  For very strong softening, that is, 0→Ξ ,  shiftv  vanishes. In contrast, it 

assumes larger values when the softening effect vanishes, that is ∞→Ξ . With the new 
parameter shiftv , the instability speed is given by  

ρ
σ coh

shiftinst vv +Ξ= )( ,      (2)  

which we refer to as the modified Gao model. Note that cohσ  is the cohesive stress, and ρ  is the 



density as in [5]. Without describing the details, the physical significance of this parameter can 
also be understood from within the perspective of the characteristic energy length scale χ  

proposed earlier [6]. We determined the function )(Ξshiftv  by a series of MD simulations. The 
results are shown in Figure 4.  

Now we focus on the dependence of the instability speed on the parameter breakr  for fixed 

150=Ξ  (Fig. 5). We have studied the dynamics for several choices of Ξ , but we only discuss 
the results for 150=Ξ .  Whereas the observed limiting speeds agree well with the predictions by 
the modified Gao model (eqn. (2)) for 22.1break <r , the results deviate for larger values of 

22.1break >r . In this case, we observe that the instability speeds are very close to Yoffe’s 

prediction of 73 % of Rayleigh-wave speed, and virtually independent of breakr . This suggests that 

the instability speed is governed by a deformation field mechanism. For 22.1break >r , the 
predictions by Gao’s model are higher than the Yoffe speed (see Fig. 5). This is a significant 
result, as it suggests a change in the dynamical mechanism of the instability from cohesive-stress 
and thus energy flow controlled, to a deformation field controlled Yoffe mechanism. Note that we 
observe the same phenomenon for different choices of Ξ  ranging from about 50 to 1,500. 
 

 

 
Figure 4: Change of shift parameter shiftv  
as a function of the smoothing parameter. 
The physical interpretation of the shift 
parameter is that it is a measure for how 
strong is the effect of energy flow 
reduction close to the crack tip. The main 
result is that the stronger the smoothing 
close to the crack tip, the smaller the value  

of the shift parameter shiftv  (eqn. (4). When the shift parameter vanishes, the instability dynamics 
is completely governed by energy flow (as in Gao’s model [5]). For large values of the shift 
parameter, energy flow becomes negligible and the instability dynamics is largely controlled by 
the deformation field [1].   
 

4. DISCUSSION AND MAIN CONCLUSIONS 
 

The studies confirmed that the large-deformation potential properties play a critical role 
in the instability dynamics of cracks. It remains an open question, how can the hyperelastic model 
[5] and the Yoffe model [1] be combined? Based on the results of our numerical experiments, we 
propose that this can be achieved by taking the minimum of the Yoffe speed and the prediction by 
the modified Gao model. The critical crack tip instability speed is then given by 
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Note that RYOFFE cv ×≈ 73.0  is a constant. We reiterate that the physical interpretation of shiftv  
is related to the size of the hyperelastic softening region and the importance of energy flow on the 
instability dynamics. The shift parameter vanishes if energy flux completely governs the instability 



dynamics, corresponding to very small values of Ξ . It increases to larger values as ∞→Ξ , 
when the hyperelastic region is very small and the effect of softening on the instability is 
negligible—therefore, the Yoffe theory dominates the instability and Gao’s model is no longer 
valid. We find that a square-root dependence of shiftv  on Ξ  provides a good fit to the MD results: 

Ξ=Ξ α)(shiftv .       (4) 

Note that 0138.0=α  is determined from the numerical calculation results (the fit is plotted in 
Fig. 4).  

This set of equations and numerical parameters, to the best of our knowledge for the first 
time allow quantitative predictions about the onset of the instability in the system at hand. Most 
importantly, eqns. (3) and (4) provide a direct link between Yoffe’s and Gao’s model of instability 
dynamics, which should at least qualitatively be generally valid in “real” solids.  
 

 

 

 
Figure 5: Instability speed as a function of 

the parameter breakr , for 150=Ξ . The 
results show that the instability speed varies 
with breakr  and thus with the cohesive stress, 

but the Yoffe speed [1] provides an upper 
limit for the instability speed. This suggests 

a change in dynamical mechanism from 
cohesive-stress controlled, or energy flow 
controlled, to deformation field controlled. 
The plot also depicts the prediction by the 
modified hyperelastic model given in eqn. 

(3) and (4).  
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