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ABSTRACT
Though classical approaches to fracture, based on small deformation theory, have been applied successfully

to a wide range of applications, they may be inapplicable for explaining experimental observations in which
nonlinear, hyperelastic material response is an essential feature of the phenomenon. Among these phenomena
are the branching instabilities observed during dynamic crack propagation. Simulation approaches that incor-
porate a cohesive view of material are able to demonstrate the appearance of fracture path instabilities. In this
work, we study the hypothesis that instabilities occur as a result of a local limiting speed by investigating dy-
namic crack propagation along a weak plane in a strip described by a cohesive continuum. The introduction
of the weak plane allows the fracture properties and the properties of the strain-softened, near-tip region to be
selected independently. In the absence of dissipation, a mode I crack in a strip should accelerate to the Rayleigh
wave speed if the far-field driving force exceeds the fracture energy. Under these conditions, the local limiting
speed hypothesis predicts that the crack speed will be dictated not by the far-field driving force, but by acoustic
wave speeds in the region surrounding the crack tip. It then follows that a crack that is unable to accelerate
will become surrounded by a growing region of accumulating strain energy. The goal of this work is to study
what effect the strain energy accumulating in the near-tip region has on the onset of branching instabilities. The
scale and structure of this region will be investigated by evaluating the energy-momentum flux through various
contours around the moving crack tip.

1 INTRODUCTION

Most existing theories of brittle fracture are based on a small deformation description of material
behavior. These approaches neglect the extraordinarily large, nonlinear elastic deformations that in-
evitably occur near the crack tip, and assume that the crack initiation and propagation characteristics
can be determined solely from the mechanical state of the far-field. However, recent experimental
observations of dynamic crack propagation in nominally brittle materials (see [1]) have challenged
this global viewpoint. Small deformation theories have been unable to predict such fundamental
results as the relationship between the crack speed and driving force, the maximum crack speed, and
development of branching instabilities. Experiments consistently report the maximum crack speed
at roughly half of the theoretical limiting value, the Rayleigh wave speed (cR), and fracture path in-
stabilies have been observed at speeds as low ascR/3 [2]. Ravi-Chandar and Knauss [3] performed a
series of experiments to observe dynamic crack propagation in Homalite, a brittle polymer. Though
the experiments were designed to drive the crack to the theoretical limiting speed, they observed
terminal crack speeds between 0.35cR − 0.5cR depending on the loading rate. From analyses of the
fracture surface, they also observed progressive roughening with crack extension preceding branch-
ing. These results led Ravi-Chandar and Knauss to conclude that the excess driving force, beyond
what is needed to propagate the crack at the driving force is absorbed by large deformation material
processes in the near tip region, specifically the nucleation and growth of microcracks, that lead to
the development of fracture path instabilities.

Though explanations for the development of dynamic instabilities have been sought within the
classical, small deformation, elastodynamic framework (see for example [4]), none can predict the



onset of fracture path instabilities at the low speeds observed in experiments [1]. This lead Gao [5, 6]
to propose that a local viewpoint, one that considers the nonlinear, hyperelastic material response
in the near-tip region, is essential for understanding the dynamics of crack propagation and the
development of fracture path instabilities. Using a hyperelastic, strain-softening model to describe
the material response ahead of a Mode I crack tip, Gao showed that the elastic wave speeds at the
cohesive state are severely reduced by hyperelastic softening from those exhibited in the nearly
undeformed, far-field material. The severe deformation in the near-tip region creates a zone of
highly stressed, strain-softened material that slows the flow of energy to material ahead of the crack
tip. The speed of crack propagation is ultimately limited by the rate of energy transport through the
slow zone, characterized by the locally reduced wave speeds, and not the globally applied driving
force. The local limiting speed hypothesis provides an explanation for the occurrence of dynamic
instabilities. With the wave speeds severely reduced ahead of the crack tip, the crack seeks alternate
propagation directions along which the material exhibits less softening and energy can be delivered
at a faster rate. The result is a wavy propagation path that corresponds to the roughened appearance
of the fracture surface. For a crack traveling near the local limiting speed, the rate of energy transport
to the crack tip to sustain the fracture process can lag the energy flux into the nonlinear zone. The
accumulation of energy that would have otherwise gone to accelerating crack growth causes the
material inside the slow zone to become more highly stressed and the slow zone itself to enlarge.

The Virtual Internal Bond (VIB) model was developed by Gao and Klein [7] to introduce the
effects of hyperelastic softening at the crack tip. VIB is fundamentally an extension of Cauchy-
Born elasticity to an isotropic network of material particles joined by phenomenological bonds.
The bonds deform according to the macroscopic deformation gradient, and the interactions of the
bonds are averaged over the network distribution to calculate the continuum strain energy density
for manipulation by hyperelasticity theory. The constitutive relations of VIB exhibit strain softening
if a cohesive force law is used to describe the behavior of the bonds. Though VIB conceptually
represents the “damage” sustained (for example, by microcracking) in the near-tip region, it is dif-
ferent from a continuum damage model which produces strain softening through the evolution of an
internal history variable representing the state of material damage. Instead, the material softens con-
tinuously with deformation as dictated by the cohesive potential. VIB has been applied successfully
to simulate the development dynamic instabilities. For example, Klein and Gao [8] use VIB to simu-
late the dynamic fracture experiments of Fineberg and coworkers [9]. A prediction of the branching
pattern under dynamic crack growth conditions is shown in Figure 1. The simulation models crack

Figure 1: A pattern of dynamic crack branching predicted using the Virtual Internal Bond model [8].

propagation in a long strip subject to constant rate displacement of the upper and lower edges. For
a range of applied boundary velocities, the crack quickly accelerates to a terminal speed that does
not exceed 0.53cR, and instabilities in the crack speed appear at 0.32cR. Also, a slow zone appears
at the crack tip and grows as the crack accelerates to the terminal speed and during extension at the
terminal speed. Prolonged propagation at the terminal speed results in branching.



The development of the near tip nonlinear zone and the role it plays in triggering crack tip in-
stabilities and branching have not been investigated in detail. It is traditionally considered that a
necessary condition for crack branching is that the energy release rate be sufficient for providing the
dissipation associated with the creation of four free surfaces, two for each fracture path. This con-
dition is derived from a global viewpoint of the energy balance. With the introduction of a cohesive
continuum, a crack that macroscopically appears to be propagating under steady-state conditions
may be developing a local accumulation of strain energy around the crack tip. This accumulated
strain energy may then drive the development of branching at a small scale that is not admissible
from the global viewpoint. In order to study these effects, we consider the case of a crack propa-
gating under constant far-field loading conditions along a weak plane in a strip of material whose
properties are given by a cohesive continuum model. For this configuration, Liu and Marder [10]
showed that the crack will accelerate to the Rayleigh wave speed for any applied driving force ex-
ceeding the fracture energy, exhibiting a characteristic transient time governed by the loading, strip
geometry, and material properties. A weak plane is introduced so the properties of the strain-softened
near tip region can be selected independently of the fracture properties. We will study the scale and
structure of the zone accumulating strain energy using the material force method, following the
framework introduced by Maugin and Trimarco [11]. The method can be used to calculate the flux
of energy-momentum across different contours around the crack tip. As a result, we will be able to
assess the size of the zone of strain energy accumulation and determine how this zone contributes to
the development of crack tip instabilities. The components of our modeling approach are described
briefly below.

2 THE VIRTUAL INTERNAL BOND MODEL

The VIB model is developed within the framework of hyperelasticity. The arrangement of cohesive
interactions among material particles is described by a bond density function. The strain energy
density,
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is computed by integrating the bond density over a representative volume in a continuous analog to
the sum over discrete lattice neighbors for the case of crystalline materials. The variables�0 is the
undeformed representative volume,r is the deformed virtual bond length,U(r ) is the bonding po-
tential,D� is the volumetric bond density function, and�∗

0 is the integration volume defined by the
range of influence ofU . This method was first alluded to by Gao [5] for constructing an amorphous
network of cohesive bonds by a spatial average. The deformed bond lengthr is computed from
the Cauchy-Born rule, assuming affine deformation of the integration volume�∗

0. In order to avoid
questions as to whether the Cauchy-Born rule holds for the proposed microstructure, we consider
only bond density functionsD� that are centrosymmetric. Under this restriction, the deformation
at the microstructural level must be homogeneous in order to maintain the symmetry present in the
undeformed configuration. The undeformed virtual bond vector is represented as,R = R4, where
R is the reference bond length, and4 is a unit vector in the direction of the undeformed bond. Un-
deformed bonds are mapped to their deformed configurationr by the affine transformation,r = F R
whereF is the continuum deformation gradient. Making use of the right Cauchy-Green stretch
tensor, the deformed bond length is calculated as

r (C) = R
√

4 · C 4. (2)



Using hyperelasticity theory, the stress response is computed from the strain energy density (1) as,
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whereS is the the (symmetric) 2nd Piola-Kirchhoff stress tensor. Selecting the centrosymmetric
bond distribution function asD� = D0 δD(R − R0), whereD0 is a constant andδD is the Dirac
delta function, yields a model for amorphous material with nearest neighbor bonding only.

3 THE COHESIVE SURFACE METHOD

The weak plane in our system is modeled using a cohesive surface approach. The advantage of
this approach is that crack advance occurs, without requiring evaluation of a fracture criterion, as
dictated by the local driving force. For this study, we use a traction-separation relation similar to
the one introduced by Tvergaard and Hutchinson [12]. The magnitude of the cohesive traction is
expressed as a function of a nondimensional effective opening displacement
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whereδ∗
t andδ∗

n represent the characteristic tangential and normal opening displacements, respec-
tively. Defining the traction potential
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yields the rate-independent, mixed-mode traction-separation relation
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For simplicity, we select a simple tri-linear form forT̂(1), characterized by a cohesive stressσc =

T̂(1∗) where 0< 1∗ < 1, yielding a fracture energyGc =
1
2σcδ

∗
n. The cohesive stress will be

selected to drive deformation of the surrounding material well into the nonlinear regime, while the
length parameterδ∗

n will be selected to ensure the scale of the nonlinear near-tip zone is well-resolved
by the mesh.

4 DISCUSSION

Figure 2 shows the development of the initial branch in a crack propagating through a strip of mate-
rial described by the VIB model, as presented in [8]. Locations at which the acoustic wave speeds
have dropped below a critical value are indicated with dark points. The strip is loaded by a constant
boundary velocity, and the times shown are normalized by the time at which the crack begins to
propagate. Initially (a), all points displaying localization lie along a straight path extending from the
pre-crack. Aftert/tinit = 1.28 (b), the first evidence of localization above and below the symmetry
line appears. Based on the local limiting speed theory of dynamic crack tip instabilities, the crack
has reached a speed at which the strain-softened material immediately ahead of the crack is unable to



Figure 2: The onset of branching instability.

maintain a sufficient rate of energy transfer, and the crack has begun to probe alternate propagation
directions. Between 1.28 < t/tinit < 1.48 (c), the crack continues to accelerate and the acoustical
barrier ahead of the crack tip enlarges, evolving to an extended region of “slow” material. Since
deformations in the VIB model are strictly reversible, the material recovers as the tip moves away,
leaving no indication of this extended region in the subsequent fracture path. At some time before
t/tinit = 1.53 (d), the crack tip reaches a critical state, and the first true branch appears in the crack
path.

This calculation illustrates the development of a branching instability, but characteristics of the
near tip zone were not investigated. In part, this omission is due to the limitation imposed by the
absence of a weak plane. Without a weak plane, the fracture properties and the nonlinear elastic
behavior of the continuum are intimately linked by the characteristics of the VIB model, which
limited mesh resolution of the near-tip zone. The loading in this calculation was also applied too
quickly to allow the near tip zone to develop under a nearly constant far-field driving force. Indeed,
since the far-field driving force scales with the square of the applied nominal strain and thus as
(t/tinit)

2, the branching seen in Figure 2 occurs after the far-field driving force exceeds twice the
fracture energy. We will address these limitations in the previous study to clarify the effect of the
near tip nonlinear zone.

ACKNOWLEDGMENTS

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration under con-
tract DE-AC04-94AL85000.

References

[1] Ravi-Chandar, K., Dynamic fracture of nominally brittle materials, International Journal of
Fracture 90 (1998) 83–102.



[2] Fineberg, J., Gross, S. P., Marder, M., Swinney, H. L., Instability in the propagation of fast
cracks, Physical Review B 45 (1992) 5146–5154.

[3] Ravi-Chandar, K., Knauss, W. G., An experimental investigation into dynamic fracture: III.
On steady-state crack propagation and crack branching, International Journal of Fracture 26
(1984) 141–154.

[4] Yoffe, E. H., The moving Griffith crack, Philosophical Magazine 42 (1951) 739–750.

[5] Gao, H. J., A theory of local limiting speed in dynamic fracture, Journal of the Mechanics and
Physics of Solids 44 (1996) 1453–1474.

[6] Gao, H. J., Elastic waves in a hyperelastic solid near its plane strain equibiaxial cohesive limit,
Philosophical Magazine Letters 76 (1997) 307–314.

[7] Gao, H. J., Klein, P., Numerical simulation of crack growth in an isotropic solid with ran-
domized internal cohesive bonds, Journal of the Mechanics and Physics of Solids 46 (1998)
187–284.

[8] Klein, P. A., Gao, H., Study of crack dynamics using the virtual internal bond method, in:
Chuang, T. J., Rudnicki, J. W. (Eds.), Multiscale Deformation and Fracture in Materials and
Structures: The James R. Rice 60th Anniversary Volume, Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 2000, pp. 275–309.

[9] Fineberg, J., Gross, S. P., Marder, M., Swinney, H. L., Instability in dynamic fracture, Physical
Review Letters 67 (1991) 457–460.

[10] Liu, X., Marder, M., The energy of a steady-state crack in a strip, Journal of the Mechanics and
Physics of Solids 39 (1991) 947–961.

[11] Maugin, G. A., Trimarco, C., Psuedomentum and material forces in nonlinear elasticity: vari-
ational formulations and application to brittle fracture, Acta Mechanica 94 (1992) 1–28.

[12] Tvergaard, V., Hutchinson, J. W., The relation between crack growth resistance and fracture
process parameters in elastic-plastic solids, Journal of the Mechanics and Physics of Solids 40
(1992) 1377–1397.


