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ABSTRACT

One of the open challenges in anisotropic damage modeling is formulating damaged elasticity approaching
general orthotropy. In this paper, with reference to previous work by the same authors, an ‘extended’ constitutive
formulation of isotropic and anisotropic damage is proposed, which is based on a Young’s modulus/Poisson’s
ratio decomposition of the initial isotropic compliance. Orthotropic damage is described through a second-
order tensor damage variable. Main focus is on the secant relations and on the dependence of the engineering
elastic parameters with damage as a function of a scalar characteristic parameter defining the slope of linear
constrained damage paths in the plane of logarithmic damage variables.

1 INTRODUCTION

Anisotropic damage modeling still poses a number of challenges. One of them is formulating secant
moduli approaching general orthotropic representations, while preserving at the same time a conve-
nient modular structure and manageable number of damage variables. The constitutive formulations
can be developed within the well-established framework of Continuum Damage Mechanics (CDM),
which allows to employ convenient concepts (though not mandatory) such as effective stresses and
strains, damage-effect tensors, strain or energy equivalence, and so on. The developments on CDM
have given rise to a considerable literature. For the sake of conciseness, reference is made here essen-
tially to previous work by the same authors [1,2], papers which contain as well extensive reference
lists on the topic.

In the recent past, the authors have developed a ‘basic’ model of anisotropic damage charac-
terized by secant moduli endowed with simple expressions, which corresponds to a restricted 5-
coefficient form of orthotropic degradation and fits well into the CDM framework through the as-
sumption of energy equivalence and the adoption of a second-order tensor damage variable [1].
Then, the authors have undertaken the effort of generalizing the representation of anisotropic dam-
age, with the long-term objective of eventually approaching 9-coefficient general orthotropy. The
first step is to increase from 5 to 6-coefficient orthotropy. This is done by combining the ‘basic’
formulation with a 2-coefficient isotropic degradation, which can be developed in various ways, de-
pending on the isotropic stiffness or compliance that is taken as reference for the virgin material. An
‘extended’ formulation has been developed along that line, which is based on a volumetric/deviatoric
decomposition of the initial stiffness and compliance [2]. The formulation considers both secant and
tangent moduli and seems to be suited best for materials displaying prevailing deviatoric damage.

In this paper, an additional ‘extended’ formulation better suited for concrete and other quasi-
brittle materials is proposed, which is based on a Young’s Modulus/Poisson’s ratio decomposition of



the initial isotropic compliance. Main focus is on the secant relations and on the dependence of the
engineering elastic parameters with damage as a function of a scalar characteristic model parameter
defining the slope of ‘single-dissipative’ linear constrained damage paths in the plane of logarithmic
damage variables. In the isotropic case all engineering moduli and Poisson’s ratio experience smooth
decreasing trends at increasing damage.

Later, the ‘extended’ formulation should be made compatible with evolution laws in ‘pseudo-
logarithmic’ space of damage, as done for the previousK/G-‘extended’ formulation, and analytical
solutions for simple loading cases should be derived same as done for the ‘basic’ formulation (e.g.
uniaxial tension, pure shear), before final implementation in constitutive drivers would be considered
to evaluate efficiency, correctness and consistency, especially with respect to more involved loading
scenarios involving rotation of the principal directions of stress/strain and damage (as done in [1]).

Notation. Second-order tensors are identified by boldface characters, whereas fourth-order tensors
are denoted by blackboard-bold fonts (e.g.C). Symbol ‘:’ denotes the inner product with double
contraction. The dyadic product is indicated with ‘⊗’, whereas ‘⊗ ’ denotes the symmetrized outer
product; componentwise:(A⊗B)ijkl=AijBkl and(A⊗B)ijkl=(AikBjl+AilBjk)/2. I andI⊗ I
are respectively the second-order and symmetric fourth-order identity tensors.

2 SECANT RELATION AND ISOTROPIC REFERENCE COMPLIANCE
Considering pure elastic degradation (no irreversible strains at unloading), it is assumed that the
constitutive relation is characterized by a linear secant law. At any damage state the (small) strain
tensorε and stress tensorσ are related by:

ε = C(C0,D) : σ , (1)

whereC is the positive-definite fourth-order compliance tensor, endowed with major and minor
symmetries. In the initial (virgin) state the material is characterized by undamaged complianceC0.
In Eq. (1) it is also assumed that the compliance tensorC is a function of a generally-defined damage
variableD, which may be scalar, vector- or tensor-valued (here scalar or symmetric second-order
tensor variables are assumed). Obviously, the damaged compliance also depends explicitly on its
initial valueC0 at virgin state. Such reference is assumed here to be isotropic.

To develop a damage model of initially-isotropic materials, different forms of the reference
isotropic compliance could be considered. In the ‘extended’ model [2], reference was made to the
bulk and shear moduli and relevant compliance representation in terms of volumetric and deviatoric
projection operators. This allowed a number of convenient features, especially the possibility to use
the algebraic properties of the idempotent projection operators [6]. However, the final trends experi-
enced by the elastic parameters were not entirely satisfactory for concrete or rock-like materials. For
example, Poisson’s ratio increased with prevailing deviatoric damage, while decreased to negative
values for prevailing volumetric damage. On the other hand, one may expect a decreasing, positive
Poisson’s ratio for concrete. Other authors have started from different isotropic references, for in-
stance by referring to the elongation and bulk moduli [3,4], which is claimed sufficient to describe
completely the orientation distribution functions of the elastic properties. This calls for a general
investigation on the more appropriate reference states apt to address damage for specific materials.

In the present model we refer to the following form of the undamaged isotropic compliance:

C0 =
1 + ν0

E0
I⊗ I− ν0

E0
I⊗ I ⇒ C0 =

1
E0

I⊗ I +
ν0

E0
(I⊗ I− I⊗ I) , (2)

in terms of undamaged Young’s modulusE0 and Poisson’s ratioν0. Here the two fourth-order tensor
terms have the following classical 6×6 matrix representations in Kelvin notation (see e.g. [6]):
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[I⊗ I] =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




; [I⊗ I− I⊗ I] =




0 −1 −1 0 0 0
−1 0 −1 0 0 0
−1 −1 0 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




. (3)

3 ISOTROPIC DAMAGE

Considering first isotropic damage based on the reference isotropic compliance (2), the damaged
(increased) compliance at the current isotropic damage state reads:

C =
1
E

I⊗ I +
ν

E
(I⊗ I− I⊗ I) , (4)

whereE andν are current Young’s modulus and Poisson’s ratio.
Different damage variables may be introduced at this stage to describe the evolution of the secant

parameters. We do it according to the following assumptions (within the spirit of the so-called
classical (1−D)-isotropic damage model):

1
E

=
1

1−DE

1
E0

;
ν

E
=

1
1−DE/ν

ν0

E0
. (5)

Scalar damage variables 0≤DE<1 and 0≤DE/ν<1 model the increase of the compliance terms
related to1/E andν/E. Notice that the model is ‘bi-dissipative’ at this stage if the two damage
variables evolve independently. To work out the direct dependence ofν with damage, one gets:
ν/ν0=(1−DE)/(1−DE/ν)=1−Dν , or Dν=(DE−DE/ν)/(1−DE/ν). Then, if a decrease of the
Poisson’s ratio has to be prescribed (ν/ν0≤1), evolution laws ofDE andDE/ν should be defined
such that the constraintDE/ν≤DE would hold at each damage state. IfDE/ν=DE , Poisson’s ratio
becomes constant, which originates the classical (1−D)-isotropic damage model referred-to above.

Alternative scalar damage variables can be introduced in place ofDE andDE/ν , specifically the
integrity variablesφ̄E , φ̄E/ν , with complementary variation between 1 and 0, and the logarithmic
damage variablesLE , LE/ν , with unbounded increase from 0 to∞ [1,2]:

1−DE = φ̄ 2
E = e−LE ; φ̄E =

√
1−DE , LE = ln

1
1−DE

;

1−DE/ν = φ̄ 2
E/ν = e−LE/ν ; φ̄E/ν =

√
1−DE/ν , LE/ν = ln

1
1−DE/ν

.
(6)

To keep the model ‘single-dissipative’, the following links between the logarithmic damage vari-
ablesLE andLE/ν and a single logarithmic damage variableL are prescribed:

LE = (1 + η) L ; LE/ν = (1− η) L . (7)

Here, constant parameterη, with general range−1≤η≤1, fixes the slope of constrained linear paths
in the plane of the logarithmic damage variables (Fig. 1), whileL may be alternatively represented
by damage variablesD andφ̄ through similar links as the ones above:L=ln 1/(1−D)=−2 ln φ̄.

With such assumption one obtains the following variations ofE andν with φ̄:

E

E0
= φ̄ 2(1+η) ;

ν

ν0
= φ̄ 4η . (8)
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Figure 1: Single-dissipative straight paths in the plane of logarithmic damage variablesLE/ν , LE . The path
slope in the upper half of the I quadrant is defined by constant parameter0≤η≤1.

To avoid (unbounded) growth ofν, according to the constraintDE/ν≤DE , we shall restrict the
range of constantη to positive values:0≤η≤1. If η=0 a classical(1−D)-model is obtained and
ν=ν0. Bulk and shear moduli can also be derived as follows:

K

K0
= φ̄ 2(1+η) 1− 2ν0

1− 2ν0φ̄ 4η
;

G

G0
= φ̄ 2(1+η) 1 + ν0

1 + ν0φ̄ 4η
. (9)

Figure 2 depicts the variation of the material parameters with both logarithmic and standard damage
variablesL andD for different values of0≤η≤1. A linear variation ofν with D is obtained for
η=1/2. If η=0 all moduliE, K andG decrease linearly to 0 as in the(1−D)-model.

4 ANISOTROPIC DAMAGE
The secant compliance at the current anisotropic damage state is prescribed in a form generalizing
that of Valanis [5] in which the identity tensors are replaced by the inverses of the integrity tensors
(symmetric second-order tensors varying betweenI (no damage) and0 (full damage), see also [1]).
Operating like that on the reference compliance (2) and following steps similar to those developed
in [2] one obtains:

C =
1

E0
φ̄
−1

E ⊗ φ̄
−1

E +
ν0

E0

(
φ̄
−1

E/ν ⊗ φ̄
−1

E/ν − φ̄
−1

E/ν ⊗ φ̄
−1

E/ν

)
, (10)

whereφ̄E andφ̄E/ν are integrity tensors associated to factorsE andE/ν. At this stage the model
would then be ‘bi-dissipative’. Same as in the isotropic case, the model is turned ‘single-dissipative’
through the following product decomposition assumption:

φ̄E = φ̄η φ̄ ; φ̄E/ν = φ̄−η φ̄ , (11)

whereφ̄ is a common integrity tensor describing the anisotropic damage state and scalarφ̄ is the
1/3 power of the determinant of̄φ, φ̄=(detφ̄)1/3.

Then, the current isotropic compliance can be written in final form as:

C =
1
Ê

φ̄
−1⊗ φ̄

−1 +
ν̂

Ê

(
φ̄
−1⊗ φ̄

−1 − φ̄
−1 ⊗ φ̄

−1
)

, (12)

similar to Valanis’ expression but with undamaged elastic parameters replaced by modified elastic
parameters with hats defined as follows:

Ê = φ̄ 2η E0 = φ̄ −2 E ; ν̂ = φ̄ 4η ν0 ≡ ν . (13)
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Figure 2: Elastic parameters as a function of damage variablesL andD: (a) Young’s modulus; (b) Poisson’s
ratio; (c) Bulk modulus (forν0=0.2); (d) Shear modulus (forν0=0.2).
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Notice thatν̂≡ν. Also, bulk and shear moduli with hats derived according to (13) read:

K̂ =
Ê

3(1−2ν̂)
= φ̄ 2η 1−2ν0

1−2ν0φ̄ 4η
K0 = φ̄ −2 K; Ĝ=

Ê

2(1+ν̂)
= φ̄ 2η 1+ν0

1+ν0φ̄ 4η
G0 = φ̄ −2 G. (14)

The orthotropic engineering elastic parameters embedded in (12) are finally obtained in the prin-
cipal axes of damage as:

[Corth]=




1
E1

−ν12
E2

− ν13
E3

−ν21
E1

1
E2

− ν23
E3

−ν31
E1

−ν32
E2

1
E3

1
2G12

1
2G23

1
2G31




;





EI = φ̄2
I Ê , I = 1, 2, 3 ;

GIJ = φ̄I φ̄J Ĝ , I, J = 1, 2 ; 2, 3 ; 3, 1 ;

νIJ =
φ̄J

φ̄I

ν̂ , I 6=J = 1, 2, 3 ;

(15)

where the dependence onη is hidden in the parameters with hats according to (13) and (14)b. The
model is then characterized by 6 parameters, 3 constants (undamaged elastic constantsE0, ν0 and
path-parameterη), and 3 evolving principal values of̄φ.

5 CONCLUDING REMARKS
An ‘extended’ formulation of anisotropic elastic damage in initially-isotropic materials has been
presented. It is based on a particular decomposition of the reference isotropic compliance. A path-
parameterη discriminates the damage weights of Young’s modulus and Poisson’s ratio. The depen-
dence of the isotropic parameters with damage has been obtained, which shows smooth decreasing
trends at increasing damage in all cases. The nine orthotropic engineering material parameters en-
tering the secant compliance have been also characterized in terms of the damage state.

The present model is certainly viable of further developments: completion of the constitutive for-
mulation with appropriate evolution laws and determination of the response in rates, determination of
analytic solutions for simple loading paths (e.g. uniaxial tension, pure shear, etc.), implementation in
a constitutive driver, exploitation of more involved loading scenarios with rotations of the principal
directions of stress, strain and damage. These issues are at present still concern of investigation.
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