
 
 

Hamiltonian Formalisms In Elasticity - Potential Use for Fracture 
Mechanics 

 
J. LI 1, N. RECHO2 

1LPMTM, CNRS UPR 9001, Université Paris XIII, 
99 Avenue Jean-Baptiste Clément,  93430 Villetaneuse 
2LAMI, Université Blaise Pascal de Clermont-Ferrand, 

Avenue Aristide Briand, 03100 Montluçon 

 
ABSTRACT 

The first part of this paper deals with several Hamiltonian formalisms in elasticity. We first present briefly the 
formalisms of Zhong and Bui, (Bui, [1]; Zhong, [2]), which resolve respectively the two-end problem and the 
Cauchy problem in elasticity. Then we propose a new Hamiltonian formalism, which resolves simultaneously 
the two problems mentioned above and it shows the link between the two formalisms. The potential use for 
fracture mechanics purposes is then mentioned. In fact, when traditional theories in fracture mechanics are 
used, asymptotic analyses are often carried out by using high-order differential equations governing the stress 
field near the crack tip. The solution of the high-order differential equations becomes difficult when one deals 
with anisotropic or multiplayer media etc. The key of our idea was to introduce the Hamiltonian system, 
usually studied in rational mechanics, into continuum mechanics also, one can obtain a system of first-order 
differential equations, instead of the high-order differential equation. This method is very efficient and quite 
simple to obtain solution of the governing equations of this class of problems. It allows dealing with large 
range of problems, which may be difficult to resolve by using traditional methods.  

 
1 INTRODUCTION 

Recently, important effort has been made in the reform of the classical theory of continuum 
mechanics in the frame of the Hamiltonian system. In these new approaches, the principle of 
Hamilton is applied in a special manner, i.e., by considering a dimensional parameter as “time”. In 
this topic, we can distinguish two formalisms: the formalism of Bui [1] and the formalism of 
Zhong [2]. By seeking the variations of the couple (displacements, traction forces) on an arbitrary 
front in a solid when this front virtually moves from an initial position to a neighbour one, a first-
order differential equation system governing the mechanical fields was explicitly established. That 
is the Cauchy problem in elasticity resolved by Bui [1]. On the other hand, the formalism of Zhong 
[2] looks like more classical. In simple words, he established an analogy between quantities in 
rational mechanics and those in continuum mechanics. For example, a dimensional coordinate in 
continuum mechanics is considered as time in rational mechanics; the displacement vector as the 
generalized coordinates; the strain energy density as the Lagrange function and so on. This 
analogy leads to the canonical equations of Hamilton governing the mechanical fields in elastic 
bodies. The main advantage of these approaches is that the fundamental equations can directly be 
resolved. The traditional semi-inverse method is then replaced by a direct, systematic and more 
structural resolution method. 
 

2 ZHONG’S FORMALISM; THE TWO-END PROBLEM 
Let consider a solid V described a coordinate system Z in which z is one chosen coordinate. Let 
consider now  q the displacements  in Z system associated to neighbour displacements, q+δq. One 

notes
z∂

∂= qq� . If we suppose that the displacements are imposed at z = z0 and z = z1, named the 

two end points. We have then: 
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Let write the total potential energy Π of the solid:   
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Where U0 is the strain energy density and W is the work density of the external forces. We define 
the Lagrange function as the integral over S. If S is the constant along z and we neglect the body 
forces and we just consider a volume element inside the solid, we can write L=U0 − W. In general, 
L is a function of q and q� . Following the principle of the minimum of total potential energy, 

0=Πδ  with respect to qδ  and using the conditions (1), one obtains Euler equation on L: 
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In rational mechanics, L is named Lagrange’s function, and (3) Lagrange’s equation. Then we 
construct the Hamilton function H (p, q) through the Legendre’s transformation:  
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From (3) and (4), one deduces immediately the canonical equations of Hamilton: 
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q and  p are dual conjugate variables. Differently from rational mechanics these two variables 
represent respectively the displacement vector and the normalised stress vector. 
 

3 BUI’S FORMALISM; CAUCHY’S PROBLEM IN ELASTICITY 
Bui [1] has solved the Cauchy problem in elasticity, by seeking the variations of the mechanical 
quantities (q as a displacement vector, p as a traction vector) at an arbitrary front in the solid when 
it virtuy moves from an initial position  Γt to a neighbour position Γt+dt, where t defines the 
movement of the front in the solid. This approach leads to an explicit system of first-order 
differential equations. 
Let consider a domaine divided into two parts Ω and Ωt by a contour Γt. Suppose that mechanical 
fields are known at the interior of the contour;  consequentley  q and p are known at the contour Γt. 
Suppose  q′ a virtual compatible displacement. The virtual work principle leads to:         
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ΛΛΛΛ is the elastic tensor. Let consider now an evolution of Γt to Ω t, i.e. at t+dt, the contour Γt 
reaches Γt+dt. It’s suitable to consider that Γt+dt se déduced from Γt by moving following the 
normal to  Γt , with a quantity ψndt,  n: is a unit vector normal to the contour and  ψ: is a positif 
scalar field  describing the velocity of the contour evolution. The variations of  (6) with respect to 
dt  gives:  
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If introducing the following  notations of tangential operators : 
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equation (7) leads to: 
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After rearrangement and part integration one can deduce the following  différential equations:        
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 Bq and Bp are expreced as function of quantities définied on the contour Γt. Their explicite 
expressions are given in the reference [1]. 
 

4 UNIFIED  DESCRIPTION OF THE TWO FORMALISMS. 
Here we describe a formalism unifying the two precedents within the frame of minimization of the 
total potential energy of the structure. 
4.1 : HALMILTON PRINCIPAL WRITING AS VARIATION OF TOTAL POTENTIAL ÉNERGY. Following (2) et 
(4), the total potential energy is written:     

( )dzHdzL
z

z

z

z
�� −⋅==Π

2

1

2

1

qp �  (11) 

 u is a  parameter describing the solid’s evolution. The description of a solid between an évent a 
and an évent b could be done under  parametrical form of 7 functions in 2D media: 
twodisplacements  q(u), three normalised stresses p(u) and one coordinate z(u). Consider u1 and u2 

as values of u corresponding to évents a and b. For  z1=u1 et z2=u2,  the total potential energy is re-
written:    
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 And its variation becomes: 
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When  u represents the coordonate z, (13) is written as follow: 
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So we have δΠ divided into two parts, the first one is an integral; the second one, is in the square 
bracket. 
4.2: Application to the two-end problem. Consider now the variation of q and z are zero at z1 and 
z2, 0et   == zδδ 0q . This means we have fixed boundaries and fixed displacement boundary 
conditions at the two ends, so we have got the so-called two end point problem. In this case, the 
quantities in the square bracket equation (15) vanish. According to the principle of minimum total 
potential energy, we directly obtain the canonical equations of Hamilton. This is the problem 
resolved by the formalism of Zhong. 
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This equation is available for arbitrary δq, δp and δz. Consequently we deduce:  
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We find here Hamilton canonical equations.  
4.3: APPLICATION TO  CAUCHY’S PROBLEM. Now consider a natural evolution of the structure, this 
means that the Hamilton canonical equations are satisfied every where in the structure, but with 
possible variations of (q, z) at z=z1 and z=z2. In this case, we have no fixed boundaries nether 
fixed boundary conditions at the two ends but we have natural evolution everywhere, this is the so 
called Cauchy problem. In this case, the integral in equation (15) vanishes i.e.: 
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For a small displacement of events a and b, the  variation of the  total potential energy is: 
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The variables q1, z1, q2, z2 are indépendant. By identification  between  (19) and (20), we have got 
the Hamilton-Jacobi equations:  
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This is the problem resolved by Bui.  We know that the Hamilton canonical equations and the 
Hamilton-Jacobi equations are equivalent. So we can say the formalism of Zhong and that of Bui 
are equivalent in the differential point of view, even they look quite different. 
Now, dealing with Bui’s formalism, it’s obvious  tahat the virtual work principle (6) could be 
written as a total potetial energy by replacing q′ by  virtual displacements δq. Note that dΩ=dΓdt, 
one writes:  
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If we define:  
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equation (22) becomes:   
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The partial derivation of (6) with respect to t, which represents the variation of virtual works due 
to virtual displcements during the evolution of the contour is equivalent to equation (23) if we 
consider a  natural evolution.  
 

5 HAMILTONIAN FORMALISM APPLIED TO FRACTURE MECHANICS 
Return back now to fracture mechanics. We can actually write the equations governing the crack 
tip fields under form of (5). The main idea is to consider one coordinate in the polar system as 
“time” and take the total potential energy as the Lagrange function. For example, we can consider 
the radial coordinate r or the angular coordinate θ as time and take the variational principles 
established in continuum mechanics as the Hamilton variational principle. Then all the procedures 
currently used in rational mechanics can be translated into continuum mechanics.  
By using this method, we have resolved some concrete problems. Some of them have been solved 
previously and some not yet. For example, we can calculate the stress singularities for an 
interfacial crack between two elastic and isotropic materials with the present method, the results 
are completely identical as those obtained by using the well-known theoretical formula. Similar 
example is a crack tip normally touching an interface has been resolved [3].   For a crack in a 
generally anisotropic material, we obtained identical near tip field as the theoretical results [4].The 
comparison shows no difference between these two stress distributions. Two other examples 
consist in finding stress singularities near a notch tip formed from two generally anisotropic 
materials and stress singularities near an inclined crack tip touching an interface between two 
generally anisotropic materials [4]. Asymptotic analysis for cracks in a bending plate formed by 
several anisotropic materials were also dealt with [5]. From this work, we see that the present 
method is particularly efficient for resolving multi-material problems. This is because the selected 
duals variables are continuous across all the interfaces. So the multi-material problem can be 
resolved as a single material problem through the construction of the transfer matrix. 

 
6. CONCLUSION  

In this paper, we give a new Hamiltonian formalism resolving simultaneously the two-end 
problem and the problem of Cauchy and as a consequence, showing the relationship between the 
formalisms of Bui and Zhong which look so different. The key idea is to write the total potential 
energy of a solid as an integral along a special axis z , then over a section S normal to it . Using 
integration by part, the variation of the total potential energy can be written as two parts [see (15)]. 
The first part is an integral along z, and the second one is an integrated quantity depending on the 
two ends z1 and z2.  For the two end problem, the displacements are imposed at the two ends; so 
their variations vanish. According to the minimum principle of the total potential energy, the 
canonical equations of Hamilton are immediately obtained. [see (16)~(18)].  On the other hand, for 
a natural evolution of the structure (i.e., the canonical equations of Hamilton are satisfied 
everywhere in the solid), but with possible variations of the two ends, the first part in the variation 
of the total potential energy vanishes [see (19)]. This corresponds to the Cauchy problem in 
elasticity. In this case, the equations of Hamilton-Jacobi can be deduced [see (21)]. Since the 



canonical equations of Hamilton and the equations of Hamilton-Jacobi are fundamentally 
equivalent, we can see that the formalisms of Bui and Zhong are equivalent too.  
Zhong’s formalism has been successfully applied to Fracture Mechanics in order to determine the 
asymptotic mechanical fields near the crack tip (Li and Recho, [3]). This work has shown that the 
Hamiltonian approach provides a systematic method in asymptotic analysis near the crack tip. It 
leads to a first order differential equation system, which is easy to deal with. We insist on the fact 
that this approach is not only a new formalism other than the traditional methods, but it can be 
used as a powerful tool in asymptotic analysis of the fracture mechanics. By using this new 
approach, we have successfully investigated some problems that may be difficult for traditional 
Airy function method. We believe that a large domain can be found in applying this new approach 
into fracture mechanics. 
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