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ABSTRACT 
The paper contains a comparison of the results of calculation and experiment for the alloy steel 
10HNAP. Specimens made of this steel were subjected to uniaxial constant-amplitude and random 
loadings with both zero and non-zero mean values of loading. For determination of the steel 
fatigue life, the energy parameter including the mean value of loading was proposed. Under 
random loading, cycles were counted with the rain flow algorithm, and damage was accumulated 
with the Palmgren-Miner hypothesis. For the registered stress histories, elastic-plastic strains were 
calculated with the kinematic hardening model proposed by Mróz-Garud.   
 

1 INTRODUCTION  
There are stress, strain and energy models which can be used for analysis of fatigue test results 
including the influence of the mean loading value. At present, the energy models [3, 4] are often  
used to describe multiaxial fatigue. However, in this model the influence of the mean value on 
fatigue is not examined in detail. The aim of this paper is to elaborate on the energy model 
including the influence of the loading mean value and its verification in fatigue tests of 10HNAP 
steel. The influence of the mean value for 10HNAP steel was analysed previously according to the 
stress models formulated by Goodman, Gerber [2] and Dang - Van [1, 2]. 
 

2 THE TESTED MATERIAL AND SPECIMEN SHAPE  
Plane specimens of 10HNAP steel [5] were tested on a fatigue test stand SHM 250. This stand 
enables tests to be performed under controlled force, displacement or strain of cyclic or random 
loadings. Chemical composition of the tested alloy steel is following: C=0.115%, Mn=0.71%, 
Si=0.41%, P=0.082%, S=0.028%, Cr=0.81%, Cu=0.30%, Ni=0.50% in wt. and Fe=balance. Static 
properties are following: E=215GPa, σYS=414MPa, σTS=556MPa, ν=0.29, El10=31%, RA,=35% and 
cyclic properties are following: σ f̀=1136MPa, b=-0.105, ε f̀=0.114, c=-0.420, n’=0.156, 
K’=853MPa. Under cyclic loading, the tests were performed for five different stress amplitudes 
and three levels of the mean loading, 75MPa, 150MPa and 225MPa. Under random loading, the 
tests were done for seven different values of root mean square of stress, σRMS and mean values, σm 
(zero, compressing and tensile). Observation time for random loading was T0 = 649 s, and 
sampling time was ∆t = 2.641⋅10-3s, i.e. 245760 instantaneous samples.  

 
3 THE ENERGY MODEL  

The energy parameter in time domain can be calculated from  
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similarly to the model presented in [3, 4], where εm is strain mean value. 
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Function sgn[σ(t), ε(t)- εm] distinguishs the positive and negative work of a cycle, i.e. energy of 
tension (positive) and compression (negative). Application of the function sgn in calculations 
causes the history of the strain energy density parameter at time to change in a symmetric way, 
while cyclic stresses and strains change in relation to the mean values. Fig. 1 and 2 show the 
constant-amplitude and random histories σ(t) with the mean value σm=75 MPa and the 
corresponing history of strain ε(t) as well as history of the strain energy density parameter with 
time with and without the function sgn.  From the graphs it appears that application of the function 
sgn reduced the mean value of Wm.  
The fatigue life of the tested material for the low- and high-cycle regime can be calculated from  
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where Wa is the amplitude of the strain energy density parameter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. History of the energy parameter at time W(t) for constant-amplitude loading. 

 
 

4 APPLICATION  OF  THE  MRÓZ-GARUD  MODEL 
This paper uses the incremental kinematic model of material hardening formulated by Mróz-Garud 
[6]. This model is based on the Mróz idea [7] introducing the plastic modulus field. According to 
this idea for the one-dimensional case, the non-linear curve of cyclic strain (σ - ε) is replaced by a 
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sequence of linear segments. Each linear segment has its own modulus of plasticity (C0, C1, C2, . . 
., Cm-1). The points on the new linearized curve of cyclic strain where moduli of plasticity change,  
determine fields in the nine-dimensional space of stresses with constant moduli of plasticity (fields 
of moduli of plasticity). The surfaces f1, f2, . . ., fm. with constant moduli of plasticity are reduced 
to spherical surfaces in the case of selection of a proper scale and application of the Huber-Mises-
Hencky condition of plasticity (H-M-H). The Mróz-Garud model assumes that the material is 
homogeneous, isotropic, and influence of the loading rate can be neglected. Moreover, the model 
does not include thermal phenomena and assumes constancy of the Young's and Poisson's modul.   
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. History of the energy parameter at time W(t) for random loading. 
 
 

5 VERIFICATION OF THE MODEL  
5.1. Constant-amplitude loading 
The transform amplitudes of the strain energy density parameter were calculated from  
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Under constant-amplitude loading for 0m ≥σ , Eq.(3) is connected with the Smith-Watson-
Topper parameter (SWT) [8] according to the following equation  

 amaamaxSWTaT )(5.05.0P5.0W εσ+σ=εσ== , (4) 
 
A graphical comparison of experimental and calculated lives is shown in Fig.3. The solid line 
represents a perfect conformity of results, the dashed lines represents a scatter band with 
coefficient of 3, i.e.  Nfexp/Nfcal=3 (1/3), because constant-amplitude tests give such scatter [5].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. A comparison of the calculated and experimental lives for 10HNAP steel under constant-

amplitude tension-compression  
 
 
5.1. Random loading 
The algorithm for determination of the fatigue life of 10HNAP steel according to the presented 
model can be shown as: 

• measurement of stresses σ(t), 
• numerical determination of strains ε(t) corresponding to the given stresses according to 

the incremental kinematic model of material hardening formulated by Mróz-Garud,   
• determination of the energy parameter history according to Eq. (1), 
• determination of amplitudes, Wa and mean values, Wm of cycles and half-cycles with the 

rain flow algorithm [9], 
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• determination of the transform amplitude of the strain energy density parameter from the 
previously determined amplitudes and mean values according to  
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• determination of a damage degree according to the Palmgren-Miner hypothesis [10, 11], 
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where  Nfi is determined from Eq. (2) for the calculated  Wa, 
 

• fatigue life determination according to the following relationship 
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where T0 is observation time. 
Figure 4 shows comparison of the calculated and experimental lives for random loading with the 
zero and non-zero mean value of loading [12]. The solid line represents a perfect  conformity of 
results, and the dashed lines represents a scatter band with coefficient of 3, i.e.  Texp/Tcal=3 (1/3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. A comparison of the calculated and experimental results for 10HNAP steel under random 

tension-compression 
 



5 CONCLUSIONS  
From the verification of the energy model for specimens made of 10HNAP steel we can draw the 
following conclusions.  
1. Satisfactory correlation of results between calculated and experimental fatigue lives was 

obtained under constant-amplitude and random tension-compression with zero and non-zero 
mean values.  

2. Almost all the results for the considered loadings are within the scatter band with the 
coefficient of 3.  

3. For random loading from calculation using the rain flow algorithm, acceptable fatigue life 
results were obtained. Negative mean value of cycles were neglected.  

4. The presented parameter of strain energy density includes the influence of the mean loading 
and for constant-amplitude loading it reduces to the known Smith-Watson-Topper model 
PSWT. 
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