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ABSTRACT
The new approach to the development of criteria of quasiductile fracture is proposed based on the
theory of nonlinear waves of localized inelastic deformation. It can be applied to consideration of
quasiductile fracture of materials where the dislocation contribution to fracture can be disregarded
(nanomaterials, surface hardened solids, thin films etc.).

1. THEORY OF NONLINEAR WAVES OF INELASTIC DEFORMATION
For dimensionless values of flow J and density α of linear defects (discontinuities of

displacement vector u) in crystal the nonlinear wave equations have the form [1, 2]:
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under the condition of compatibility for the sources
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where M is the right-hand part of eqn (1), N is the right-hand part of eqn (2), u(x,t) are
quasielastic displacements. In determining these displacements, it is useful to take into
account the presence of the initial volume density of dislocations, viscosity and thermal
expansion.
If L is the length and 2δ is the width of localised deformation region, than in the local area
r<L the flow equation has the form
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where b  is the vector of the binormal in the local coordinate system, n  is the normal, t  is
the tangent, χ is the variation of the curvature of the region (variation of the curvature of the
axis of the region) determined by the external load, s is the actual value of the length of the
region, b1, b2 are the moduli of the “Burgers vector” of the volume translational and near-
surface rotational incompability, respectively, f∇  is the gradient part of the flow,
determined by secondary sources.
In the absence of f∇ the plastic strain rate is directed along the binormal, which depends on
the actual value of the coordinate and time, to the side of the origin of the coordinates
(υ =- J ), is proportional to the curvature, the difference (b1-b2) and decreases in terms of the
modulus with an increase of r at r<L in accordance with the logarithmic law and the law 1/r3



at r>L. These equations indicate that as the length of the deformed region L decreases, the
depth of propagation of the flow also decreases and the transverse spatial dimensions of
propagation of plastic deformation become smaller (as in the effect of hardening the material
by small particles).  
The second effect is associated with strain localisation in the presence of an interphase
boundary and subsurface misorientation. In this case, b2≠0 and the difference (b1-b2) may
change the sign in some region in the vicinity of the boundary. Owing to the fact that in the
vicinity of the boundary and at a distance from the boundary it is directed towards it, region
of superimposition of the strain are possible when the effect of strain localisation in the
vicinity of the interphase boundary or formation of subboundaries, may take place. The
localisation effect may also occur as a result of compensation of the first and second term in
the right-hand part eqn (3).
The spatial-time variations of the shape Е(s,t) during the deformation process (the process of
change of shape) of the area, which is limited by length L and transverse dimensions may be
determined from the equation
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where s – current value of length along the area. 

Using the expression for J  and carrying out the substitution 
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In the absence of f∇  (or if f∇  has the same direction as b ), solving eqn (5), together with

the equation t
s
E

=
∂
∂  and the Frene equations, it may be shown that the variation of the

shape of the examined region is determined by the expressions: 
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where 
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The expressions (6-8) represent one of possible types of inelastic strain waves. They
determine the variation of the shape of the region whose axis is a spiral curve with constant
torsion υτ 2−= , equal to half the speed )4( υ−  of displacement of the curve along the
region with the curvature
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decreasing from the maximum value β4  at
the point ts υ4−=  to 0 at ±∞→s . This
loop of spiral motion travels along the
region with the speed )4( υ− . The order of
the length of displacement is approximately

maxχ .
Development of deformation component Exz
with the time is shown in Fig. 1. It is clear
that the shape changes is realized by the
wave of localized inelastic deformation.
The speed of displacement of the shape
across the specimen can be determined
easily from eqn (9) if it is assumed that

χ can be measured in experiments and its value is equal to еχ . Consequently, for υ  we

obtain (taking into account 





 −=′ 12ln

4
1

r
Lb

tt
π

) 









−






 −

= zehArc
t

r
Lb β

χ
β

πυ
4

sec
2
1

12ln1

. (10)

The variation of the inelastic strain rate
with the time is shown in Fig. 2. The
arrows indicate the magnitude and the
direction of the inelastic strain rate in the
vicinity of its axis. The strain rate is
polarised perpendicularly in relation to the
wave of the shape change, moving along
the region. The variation of the direction of
the rate along the curve is determined by
the rotation of the vector of the binormal
b  during the displacement of the local
system of coordinates along s and with the
variation of curvature. Fig. 2 shows that
the maximum variation of the direction of
the rate takes place in the region of
“inflections” along the strain axis. In the
area which the strain leaves the inelastic
strain rate is equal to 0.

The theory of nonlinear waves of
localized inelastic deformation is
developed for loading of a solid with weak
dissipation. Therefore such nonlinear
waves can be experimentally revealed in
solids where the dislocation contribution to
deformation and fracture can be
disregarded. First of all this is inherent in
deformation of nanomaterials (both bulk
nanomaterials and materials with

Figure 1: Development of deformation Exz with time

Figure 2: Variation of the form and rate of inelastic strain
with time

Figure 3: Propagation of a macroscopic localized-
deformation band in the bulk of an ion-nitrided specimen
as observed from lateral face. × 15 [3]

t

Figure 1: Development of deformation Exz with time



nanostructured surface layers), surface hardened solids, thin films etc. An example of the
nonlinear wave of localized deformation is shown in Fig. 3 [3].
The face sides of a flat steel specimen were strengthened by ion nitriding. Therefore plastic
flow by dislocation motion was suppressed. At the lateral sides of the flat specimen it can be
seen the propagation of macroshear in the form of a spiral along the conjugate directions of
τmax. It is discovered the alternating extrusion/intrusion zones in the vertexes of trihedral
prisms formed by conjugate macroshears. Similar surface nonlinear waves are observed
within nanostructured surface layers of low carbon steel and polycrystalline titanium [4].
The stage of necking is also related to suppression of dislocation motion. The development
of nonlinear waves of localized inelastic deformation at necking stage governs a specimen
fracture. Fracture criteria will be further considered.

2. THE WAVE MODEL AND CRITERIA OF QUASIDUCTILE FRACTURE
On the basis of the previously described wave nature of propagation of localized inelastic
deformation it may be asserted that the necessary condition for quasiductile fracture is that
the material must reach a state in which propagation of localized plastic deformation under
loading is no longer possible. Since fracture takes place with the aid of corresponding
stresses (sufficient conditions), the “arrest” of inelastic deformation is a prerequisite for
fracture, and this state of the material may be regarded as the prefracture state (necessary
condition already exist but sufficient conditions are not yet present). The model of achieving
such a state may be based on the determined wave pattern of localized plastic strain, where
the prefracture state may form because of the following reasons:
1. Loading cannot be accommodated by the variation of the local curvature of the deformed
region (greatly hardened material, boundary, etc.) since plastic strain is not formed. In this
case, brittle fracture is not associated with propagation of plastic deformation.
2. The variation of the curvature of the locally deformed region (boundary) in loading cannot
be accommodated by the plastic flow J  propagating along the specimen (primary slip).
3. The plastic flow J  and the curvature cannot be accommodated by the wave of the shape
variation (shape solution) across the specimen, i.e. the velocity of the shape solution tends to
0 (torsion τ → 0).
4. Mass transfer by the shape soliton cannot be accommodated by rotation of the grain
(rotation of the deformed region).
5. Rotation of the grain (rotation of the region) cannot be accommodated by the boundaries
of adjacent grains.
Since the curvature χ, determined by external loading, can be approximated by
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transfer of the material to the prefracture state (∇f → 0) in the vicinity of the axis of the
deformed region
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and away from the axis
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At this moment and in the area where zzσ  reaches the critical value, the material fails by

quasiductile fracture. If the actual J  is directed along the binormal b , then eqn (11) and eqn



(12) include J , and if the plastic flow is weak or plastic regions are very narrow and along,

the material is already in the prefracture state at low stresses zzσ . This also takes place

when J ⊥ b , i.e. primary slip is realized inside the very plastically deformed region
(boundary).
Conversely, if the plastic region is wide, and also at high E, the prefracture state occurs at
high zzσ . It should be mentioned that, in this case, the prefracture state is determined by the
possibility of local bending of the deformed region and, consequently, the stresses zzσ  are
fracturing. If the critical values of zzσ  are evaluated using Ezz )1(9~ σσ + , then in eqn
(11) and eqn (12) we can include only the Poisson coefficient.
Thus, under condition 2, a large service life reserve will be shown by the material with a high
Young’s modulus, strong plastic flows and large transverse dimensions of plastically
deformed regions.
In case 3, the tendency of τ to 0 will be achieved in the following manner. The conditions
imposed on strains at the boundaries of the deformed region should be such that

)()(),()(),()( LzELzELyELyELxELxE −=−=−= . (13)
This means that because of some circumstances, the strains at both ends of the region
(boundary) are identical or the region is closed. The conditions eqn (13) show that τ = 0 and
the equations for the maximum curvature LL ββ =2th  or )4~max(1~ LL χβ .
This case will be considered in special presentation “Mesoscopic levels of plastic flow within
surface layers of polycrystals and their fatigue fracture under cyclic bending”.
Experimental verification of the condition 2 for quasiductile fracture is illustrated in Fig. 4
for tension of nanostructured α-Fe [5]. The fragmented nanoband structure of α-Fe suppress
dislocation motion and plastic flow J  = 0 along the specimen. Macrostress concentrators at
the boundary between grip section of the specimen and its gauge length generate the
macrobands of localized deformation in the form of a cross. Local curvature within

the cross of macrobands is not accommodated by plastic flow J  in the specimen gauge
length. It causes the origination of a crack within the macrobands as an accommodation
rotation mode. Specimen fracture develops being characterized by very low ductility.
Special annealing allows one to transform the fragmented nanoband structure of α-Fe to
equiaxial submicrocrystalline substructure which is characterized by the condition J  ≠ 0
along the gauge length of a specimen. Specimen ductility increases. 
The condition 4 of quasiductile fracture is valid for all materials where necking stage occurs
before fracture. In the general case two conjugate macrobands self-organized by the scheme
of a cross develop within a specimen in the course of necking.
It does not always happen that one can manage to reveal macrobands of localized
deformation in the neck in ordinary polycrystalline specimens under tension. The microscale
dislocation deformation smears the macrobands, causing them to be weakly pronounced. 

Figure 4: Optical images of the surface of the armco-iron specimen subjected to equal-channel angular pressing
with subsequent annealing at 623 К, ε=7% [5]



However, if we retard the dislocation
deformation, e.g., by forming a submicroc-
rystalline structure or a nanostructure at the
surface or in the material bulk, the genesis
of macrobands and the wave character of
their evolution can clearly be defined in the
displacement vector field on the
descending portion of the “stress – strain”
curve (Fig. 5). The scheme of the cross of
self-conjugate macrobands (Fig. 5) is
shown in Fig. 6. The specimen elongates
mainly due to shears inside the macrobands
accompanied by local curvature. In the
bulk of the trihedral prisms AOD and BOC
between intersecting localized macrobands
displacement vectors are directed inside the
specimen. In other words the trihedral
prisms are indented into the bulk of the
tensile specimen. This indentation is
accompanied by material
mesofragmentation as an accommodation
rotation mode. At certain strain degree
mesofragmentation within the neck is

stopped due to work-
hardening. Mass transfer by
the soliton of shape variation
within the macroband cross
cannot be accommodated by
rotations in the areas AOD
and BOC. There arises crack
along BOD and the specimen
fails (Fig. 5(c)).
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Figure 6: Schematic representation of shear accommodation in
interaction of localized deformation macrobands in the form of a
cross

Figure 5: Formation of a neck and the character of
fracture of a cold-rolled Ti specimen with a
nanocrystalline surface structure under tension: an
optical image of the specimen surface (a); the
displacement vector field at the nanocrystalline
surface (b); the character of fracture of the
specimen (c); ε = 17 %. × 15 [4]


