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ABSTRACT 
An extended one-dimensional interface crack model is proposed to analyze the 

thermal-mechanical buckling behavior of multilayered beam-plate with arbitrary interface 
crack location under clamped boundary condition. The equilibrium equations, stability 
equations and characteristic equation governing buckling under thermal and mechanical loads 
are derived based on the first order shear deformation and state space method (SSM). The 
extended model was used to study the thermal-mechanical buckling failure of thermal barrier 
ceramic coatings system (TBCs) with arbitrary delamiantion location. The TBC system 
consists of superalloy substrate, bond coat, thermal growth oxidation (TGO) and top ceramic 
coating. It was loaded by a compressive applied mechanical load along the axial direction and 
a high temperature gradient along the thickness direction. The critical buckling loads such as 
the mechanical loads and thermal loads were obtained under the combination of different 
conditions. Finally the influence of the beam-plate aspect ratio, the transverse shear and the 
temperature gradient on buckling failure difference is all discussed. 
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1. INTRODUCTION 
In recent years, the composites structures exhibit notable mechanical 

characteristics, such as high strength-to-weight and stiffness-to-weight ratios, as a 
result, they are widely used in many fields of structural engineering. On the other 
hand, another functional composites such as thermal barrier coating system (TBCs) 
have also attracted much interest as heating-shielding materials for aircraft, space 
vehicles and other engineering applications. However, delamination is one of the 
most severe problems concerning composites, which is developed due to 
manufacturing defects or impact loads and thermal loads. When the compressive 
loads parallel to interface direction are applied under the conditions of the different 
temperatures, the delamination or interface crack would propagate along the 
interface. Onset of the seriousness leads to local buckling failure of the 
sub-beam-plate and growth of the delamination, causing a sudden loss of the load 
carrying capability or thermal barrier function of the structure. It is extremely 
important to understand the behavior of the composites materials with delamination.  

In these works different approaches were used, leading in some cases to 
different results. MSRao Parlapalli studied the buckling behavior of a two-layer 
beam-plate with single delamination under clamped and simply supported boundary 



conditions. The critical buckling loads were accurately obtained [1]. Wu Lanhe has 
studied thermal buckling behavior of a simply supported moderately thick 
rectangular FGM plate under thermal loads. The buckling temperature was derived 
and discussed [2]. Yeh and Tan [3] studied the buckling of laminated plates with 
elliptic delamination. Shu and Mai [4] studied the buckling analysis of a delaminated 
beam-plate with bridging. 

The existing analyses in the above literatures can’t be applied to the present 
delaminated multilayers beam-plate made of different materials under mechanics 
and thermal loads. The intent of the present paper is to investigate the delaination 
thermal buckling failure in layered beam-plate, as related to the analysis of the 
minimum critical buckling loads and thermal buckling temperature of these 
structures. We deal with a homogeneous isotropic beam-plate containing an arbitrary 
across-the-width delamination. Moreover an extended one-dimensional 
mathematical model is introduced to obtain the critical buckling loads of a 
delaminated multiplayer beam-plate under clamped boundary condition. The 
equilibrium equations, stability equations and characteristic equation governing 
buckling under thermal and mechanical loads are derived based on the first order 
shear deformation and state space method (SSM). It should be noted that the method 
could be easily extended to structures containing multiple asymmetric 
delaminations. 

 
2. EXTENDED INTERFACE MODEL 

2.1 Problem definition 
In the present 

study, the configuration 
of the delaminated 
multilayer beam-plate 
under study is 
represented in the 
sketch of Fig. 1. It 
should be noted that the 
analytical model for 
buckling failure in 
multilayers has been 
developed recently [1]. It consists of a homogeneous, isotropic beam-plate of 
thickness of H , of length L  and of unit width beam-plate containing an arbitrary, 
parallel thorough delamination with length  at depth  from the top surface of 
the beam-plate. The coordinate axes for the sub-beam-plate are shown in Fig. 1. 
Because of the presence of the thorough delamination, the multiplayer beam-plate is 
divided into virgin beam-plates 1 and 4, and to sub-beam-plates 2 and 3. The left tip 
of the delamination is located at length  from the left edge of the multilayered 
beam-plate. The multilayered beam-plate is clamped at the two edges. Moreover it is 
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Fig.1. The extended interface crack model of TBCs. 
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compressed by the axial load P  at the two edges along the neutral axis of the 
multiplayer beam-plate and heated up to different high temperature T  in the initial 
state. To simplify the analysis, the following assumptions are made. The 
compressive load is uniform and uniaxial. Delamination and the high temperature 
exist prior to applying the compressive load. “Slender” beam-plate is assumed to be 
easy to buck first among the sub-beam-plate 2 and 3. The sub-beam-plate 2 and 3 
are assumed to be not contacting each other in the initial stage of buckling because 
the sub-beam-plate 3 is more slender and flexible than sub-beam-plate 2. The 
necessary conditions and equations required to derive the governing buckling 
equation are discussed in the following sections. 
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2.2 Basic equations  

In this paper, the displacement model of virgin/sub beam-plates are based on 
the first order shear deformation theory and written as follows, 
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Assume that , ,  in eqn (1) denote, respectively, the displacement 
model of the th virgin/sub beam-plate along the 
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the th virgin/sub beam-plate along the i x  direction and the rotation of the normal 
to the beam-plate midplane.  denotes the small elastic deflection of the th 
virgin/sub beam-plate along the 
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th virgin/sub beam-plate to the right end of the th virgin/sub beam-plate.  is 
measured from 
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2ih−  to 2 ( )4,3,2,1=i . According to the first order shear 
deformation theory and Hooke’s law, the strain energy of the th segment and the 
potential energy of the compressive load can, respectively, be obtained as follows, 
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iQ11 iQ55Here  and  are proportionality constants.  and  equal to, 
respectively,  and 
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/(iiEα ( ) ( )zTzi 0−T . Moreover and  in eq. (3) denotes 

the stiffness coefficients. It should be noted that  denotes the axial load of the 
th segment. In order to simplify the analysis, in eq. (4),  and the local 

axial force  is approximatively regarded as . Therefore, the total potential 
energy of the multilayered beam-plate can be written as, 
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For the purpose of analyzing the multilayered beam-plate by the potential energy 
method, the unknown displacements must be identified first. According to the 
principle of virtual displacement, the displacement variables of the th segment 
could be divided into two parts,  
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where  is the displacement function of initiate balance state and 
iii

 is a very small variables of the displacement function when the 
multilayered beam-plate occurs buckling. The balance equations of the th segment 
can be deduced by using the potential variation principle,  
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2.3 Boundary conditions 
For clamped boundary conditions, we can obtain as follows, 
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The delaminated multilayered beam-plate model is assumed to be continuous, these 
different segments have common positions at both delaminated tips, so the 
continuity of displacement at the two positions must be satisfied and can be written 
as,  
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where . In order to simplify the analysis, the generalized forces are defined as 
follows, 
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Furthermore, the balance of generalized forces at both tips of the delamination can 
be written as, 
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2.4 State-space method  
The concept of state space method (SSM) is an important in structure mechanics, 

mathematic, physics and so on. In the following discussion we will describe how the 
state space method is used in buckling analysis. All variables of the th segment are 
expressed as a form of state space method  
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In eqn (16), '  denotes the transposition of matrix. Therefore, the governing 
balance equation of the th segment can be written as, 

                                                      (17) 
where the coefficients matrix  is defined as, 
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In eqn (18),  and 0  are 33×I order unit matrix and zero matrix, respectively. 
The matrix forms of coefficients )3,2,1(, =jC ji  are also given in the following.  
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The solution of governing balance equation (17) can be obtained as follows: 
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 and denotes the coefficient of  in equation (20). Finally, all the boundary 

conditions and continuity conditions are rewritten as the state-space form in the 
following, 
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where  expresses the transposition of matrix. Therefore, the equations (10-15) 
can be written as linear algebraic equations, 
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The lowest eigen value of the determinant of Eq. (24) is the critical buckling load 
under the different of high temperature.  
 

3. DISCUSSIONS AND CONCLUSIONS 
The thermal and mechanical properties used in the calculation were taken 

from the literatures [5]. Thermal expansion coefficient, Young’s modulus and 
Poisson’s ratio in TBCs are all dependent on the temperature and thickness. The 
thickness of the substrate, bond coat, TGO and ceramic coating are, respectively, 
assumed to be 2.1mm, 0.1mm, 0.01mm and 0.35mm. Fig.2 shows the relationship of 
non-dimensional parameter  with respect to the temperature and the 
delamination length, where  denotes the critical buckling loading of the intact 
two-layer beam. It can be seen that the non-dimensional parameter  decreases 
with the temperature of TBCs increase under the condition of the same delamination 
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length. For the same temperature, it decreases rapidly when the delamination length 
increases. It is interested that the temperature ranges, i.e., , may be a 
crucial turning temperature ranges. The reason is that the materials strength may 
severely change under the condition of the temperature ranges. Moreover, for the 
multiple asymmetric delaminations, the relationship of the non-dimensional 
parameter  and  with respect to temperature is shown in Fig. 3. 
where  is defined as the distance from the left end of multilayered beam-plate 
to the left tip of the delamination. Obviously, it can obviously see that the 
non-dimensional parameter  decreases with the increase of the 
non-dimensional parameter  and temperature. When the temperature is 
small, the non-dimensional parameter  is severely independent on the 
increase of the non-dimensional parameter . However, when the temperature 
becomes high, the non-dimensional parameter  has slightly influenced on 
the non-dimensional parameter . So the increasement of temperature and 
delamination length have strong influenced on the critical buckling loads of thermal 
barrier ceramic coatings. 
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Fig. 2 The relationship of
non-dimensional parameter ucrP
and temperature with respect to the
delamination length 
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