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ABSTRACT

The structure of three-dimensional crack tip fields under elastic perfectly—plastic conditions has been
examined using three-dimensional boundary layer formulations following Nakamura and Parks [1, 2]. The
remote boundary conditions were based on the first two terms of the Williams [3] expansion of the elastic
plane stress field. The asymptotic stresses at the crack tip were determined by extrapolation aong radial lines
to show the crack tip field as a function of load level and thickness. On the mid-plane, a plane strain field
develops which is retained even when the radius of the plastic zone is greater than the plate thickness. As the
free surface is approached out—of-plane constraint is lost, and an elastic-perfectly plastic corner field is
attained rather than a plane stress field, due to through thickness stress gradients near the free surface. The
three-dimensional fields are compared with elastic perfectly—plastic fields developed for the limiting two-
dimensional cases of plane strain and plane stress.

1. INTRODUCTION

The structure of fully three-dimensional crack tip fields is fundamental to fracture mechanics. The
problem has been usefully simplified into the important limiting cases of plane strain and plane
stress deformation. Under plane strain deformation a family of crack tip fields which depend upon
constraint have been identified by Du and Hancock [4]. The fields depend upon the T-stress, which
is the first non-singular term in the Williams [2] expansion. Positive T-stresses alow the
development of the fully constrained Prandtl field which is the limit of the HRR fields in the limit
of non-hardening plasticity. Negative (compressive) T-stresses cause aloss of constraint, through a
family of deviatorically similar but hydrostaticaly different crack tip fields. Crack tip constraint
may be lost due to either in-plane effects associated with non-singular crack tip terms (Betegon and
Hancock [5], O’ Dowd and Shih [6]), or by out-of-plane effects associated with the finite thickness
of a test specimen and deviations from plane strain conditions. Under elastic perfectly-plastic
conditions the plane stress field has been discussed by Sham and Hancock [7]. The present work
addresses constraint loss in the full three-dimensional problem, which combines constraint loss
effects due to in-plane effects and out-of plane effects, under conditions in which the plastic zoneis
small compared to the in-plane dimensions, but allowed to vary with respect to the plate thickness,
and thus fall outside the ASTM [8] limits for small scale yielding.

2. NUMERICAL METHODS
Crack tip plasticity in afinite thickness plate has been studied by modelling the near tip domain as
a circular disk with a radial through thickness crack as shown in Figure 1. Both right handed
Cartesian (x3, X2, X3) and cylindrical (z, r, 8) co-ordinate systems centred at the crack tip are used,
such that a straight crack front is located on the xs;-axis, and the crack flanks lie along on the (x; =
0) plane. The radius to thickness ratio of the disk ensured that the radius of the plastic zone was
small compared to in plane dimensions, while enabling plasticity to develop over scales which
were alowed to become large compared to the plate thickness. Under mode | loading the problem
has reflective symmetry with respect to both the mid-plane (x; = 0) and the crack plane (x, = 0),



alowing the geometry to be represented by a symmetric quarter that was modelled with first order
eight noded brick, as illustrated in Figure 2. The elements were focused at the crack tip while
maintaining a constant angular span of 10°. An identical mesh structure was repeated along the
crack front from the mid-plane (x; = 0) to the free surface (x/t =1/2), refining the mesh toward the
free surface.

At the crack tip element, aspect ratios capable of giving reliable numerical results were
developed using two levels of sub-structuring, as illustrated in Figure 2. An outer-mesh, with a
radius to thickness ratio (r/t) of 100 modelled the overall configuration. The outer-mesh comprised
360 elements arranged as a single layer of 20 circumferential rings of 18 elements. Displacement
boundary conditions corresponding to a mode | plane stress crack-tip stress field were imposed on
the outer perimeter using the mode | stress intensity factor K as a loading parameter, allowing the
out of plane displacement us to remain afree variable.
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Here G is the shear modulus, and Kk = (3 - v)/(1 + v) for plane stress, where v is Poisson’s ratio.
The outer elastic field was checked against the corresponding plane stress field to be of the form:
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where f;j are universal functions of angle (€). To achieve mesh refinement in both the radial and
through thickness directions, displacements from the outer mesh were interpolated to nodes on the
outer boundary of an intermediate mesh. This comprised 1350 elements disposed in 5 layers
through the half thickness, (t /2). The intermediate mesh was further sub-structured to a near-tip
mesh, which was designed to provide accurate solutions of field variables near the crack front. The
near tip mesh consisted of 7776 elements in 16 layers through the half thickness, the radial extent
of the near tip mesh being close to 5t. The crack tip was modelled with 18 rings of 8 noded tri-
linear hexahedron elements collapsed to give 19 coincident but independent nodes at the tip. The
near tip was resolved with elements having aradius of 5t/1000, while the field at the intersection of
the crack front with the free surface was identified using an element thickness of t/1000.

Two—dimensional plane strain and plane stress crack tip fields were established using two-
dimensional boundary layer formulations (Rice and Tracey [10]) without sub-structuring.

Figure 1: Circular Disk representing a thin plate. Figure 2 (@), (b), (¢): FE model of Outer,
Intermediate. and Near Tip mesh respectivelv.

The material response was idealised as elastic perfectly-plastic, with auniaxial yield stress g, and a
corresponding tensile strain &. At stresses less than the yield stress (o < g,) a homogenous
isotropic elastic response was adopted using a Poisson ratio 0.49, which results in close to

incompressible deformation. The stress-strain relation was generalised for multi-axial stress states
of stress using the Mises yield criterion and an associated flow rule to describe incremental



plasticity within a framework of small strain deformation. The modified B-bar method discussed
by Nakamura et al. [11] was used to stabilise the model against spurious pressure modes.

The applied load is quantified by the non-dimensional loading parameter Ji5/ dp& where
Jr , J-integral at the outer boundary, was determined from the applied stress intensity factor K .
Local vaue of the J-integral aong the crack front was determined by domain integral methods
implemented in ABAQUS [9]. The local T-stress along the crack front was determined under
elastic conditions by an interaction integral method described by Nakamura and Parks [12] as
implemented in ABAQUS[9].

3. RESULTS
Although the remote loading is uniform, the intensity of the loading may vary along the crack front
as quantified by the local values of the J-integral, Jioca. Figure 3 shows Jocy dong the crack front at
four load levels, Ja/0v& = 1, 3, 5, 8. The local values of J are amplified over the remotely applied
value of J near the mid-plane but attenuated near the free surface.
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Figure 3: Local J normalised by remote J, Figure 4: Variation of T-stress along the crack front
along half-crack front at load levels: 1, 3, 5, 8. in athin elastic plate with Poisson’s ratio = 0.49

The variation in the local T-stress along the crack front in a thin elastic plate is shown in
Figure 4. Even if no T-stressis applied in the remote field, the configuration devel ops an inherently
positive (tensile) T-stress that increases markedly towards the free surface. It is therefore necessary
to distinguish between a the local values of the T-stress and that in the remote boundary layer field,
Tappiied - The proximity to plane strain conditions aong the crack front can be quantified by an out
of plane constraint parameter g,/(0g + G;g) that is shown in Figure 5. In incompressible plane
strain deformation this parameter is 0.5 and approaches zero as proximity to plane strain islost. On
the mid-plane this parameter approaches 0.5 indicating that the deformation is close to plane strain
conditions but decays with distance from the mid-plane and the crack tip as shown in Figure 5.

The development of plasticity depends on the local variation in J and the constraint along
the crack front. On the centre plane the plastic zone shape is similar to the two-dimensional plane
stress field. The development of plasticity at the free surface is illustrated in Figure 6, in which
absolute distances are non-dimensionalised by J.ca /0. Initialy the free surface plastic zone shape
is digtinctly different, although it recovers the plane stress shape at higher levels of deformation as
the plastic zone becomes larger than the plate thickness.

Under elastic-perfectly plastic deformation the crack tip stresses are finite, and were
obtained by extrapolating to the tip along radial lines at 10° intervals using a post processing
routine. The crack tip stresses for the three-dimensional field in which loading is only based on the
stress intensity factor (Tappied = 0) are shown in Figures 7 and 8
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7/t =0. (T = 0) solution at z/t =0 solution at z/t = 0.5, (T =0)
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Figure 9: Cylindrical stresses for the 2D plane stress non-
hardening solution.

Figure 10: Cylindrical stresses for the 3D non-
hardening (T = -0.500) Tapp = -0.50, at aload level

Figure 7 shows the stresses on the mid-plane (zt = 0) compared with the two-dimensiona (T = 0)
plane strain field, which is shown with broken lines. The stress field on the free surface (z/t =0.5) is
shown in Figure 8, where it is compared to the two-dimensional (T = 0) plane strain field. It isalso
relevant to compare the free surface field with the two-dimensional plane stress field shown in
Figure 9. Figure 10 shows the crack tip stress field for Tappied = -0.50,. The compressive T-stress
results in aloss in constraint in the leading sectors of the field, paralleling the effect in the two-

dimensional plane strain field.
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Figure 11: Normalised opening hoop stress through Figure 12: Normalised hoop stress for T applied =
thickness at load levels 1, 3, 5, 8. 0.50,, 0, -0.50,.

4, DISCUSSION

It is remarkable that on the mid-plane, the three-dimensional solution is close to the two-
dimensional plane strain solution, even at deformation levels of Ji./0& = 8, when the maximum
radius of the plastic zone is more than twice the plate thickness. A more detailed presentation of the
hoop stress directly ahead of the crack is given in Figure 11. On the mid-plane (z/t = 0) the hoop
stress and associated constraint initially rise with deformation. Du and Hancock [4] and Betegon
and Hancock [5] have discussed the effect of the T-stress on the hoop stress and constraint level.
The current configuration develops an inherently tensile (positive) T-stress, which varies along the
crack front as shown in Figure 12. As the T-stress is proportional to the applied load, T is close to
zero at the lowest load level (Ji/ 0p& = 1), and the stress field at the mid—plane corresponds to the
T = 0, two-dimensiona plane strain solution. However as the load level rises, T becomes tensile
(more positive) on the mid-plane resulting in an increase in congtraint, and stress levels
approaching the fully constrained Prandtl field. The full three-dimensional solution aso exhibits
plasticity at all angles around the crack tip, which is afeature of the (T > 0) two-dimensional plane
strain solutions. The two-dimensional (T = 0) plane strain field exhibits an elastic wedge on the
crack flanks, which disappears when T becomes tensile and expands when T becomes compressive.
This feature is a'so shown by the three-dimensional field when T becomes negative. Although the
T-stress becomes even more markedly tensile close to the free surface the stress field here is
dominated by the loss of out of plane constraint effects.

The asymptotic stress field on the free surface shown in Figure 9 may be compared to the
two-dimensional plane stress field, shown in Figure 10. Plane stress requires that two condition are
met:

do, _do, _do, _

dz dz dz

The condition is met at the free surface. However the second set requiring that there are no stress
gradients in the through thickness direction is not satisfied. Under perfectly elastic conditions this
results a corner field, which does not exhibit the familiar two-dimensional r™2 stress singularity, as
discussed by Benthem [13]. Under perfectly-plastic conditions both the plane stress and corner
fields show the familiar r® dependence, but the structure of the free surface field is completely
different to that in plane stress. Directly ahead of the crack (8 = 0), the curved fan which is a
feature of the plane stress field requires that gy = 26;, and ;o= 0, however directly the corner field
shows (6=0), Ta= 0o, Gt = Gig=0.
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5. CONCLUSIONS

Three dimensional elastic perfectly-plastic crack tip fields in thin plates exhibit high levels of
constraint, associated with near plane strain deformation even when the radius of the plastic zone is
very much greater than the plate thickness. The three-dimensional configuration generates an
inherently positive T-stress which tends to counteract the loss of constraint due to out of plane
effects. However compressive applied T-stresses in the far field reduce constraint near the mid-
plane in three-dimensional configurations in the same way that occurs in two-dimensional plane
strain fields. Constraint is also lost due to out of plane effects and the departure from plane strain
conditions as the free surface is approached along the crack front. The free surface field is however
distinctly different to the two-dimensional plane stress field due to the significance of strong out of
plane stress gradients.
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