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ABSTRACT 

The structure of three-dimensional crack tip fields under elastic perfectly–plastic conditions has been 
examined using three-dimensional boundary layer formulations following Nakamura and Parks [1, 2]. The 
remote boundary conditions were based on the first two terms of the Williams [3] expansion of the elastic 
plane stress field. The asymptotic stresses at the crack tip were determined by extrapolation along radial lines 
to show the crack tip field as a function of load level and thickness.  On the mid-plane, a plane strain field 
develops which is retained even when the radius of the plastic zone is greater than the plate thickness. As the 
free surface is approached out–of-plane constraint is lost, and an elastic-perfectly plastic corner field is 
attained rather than a plane stress field, due to through thickness stress gradients near the free surface.   The 
three-dimensional fields are compared with elastic perfectly–plastic fields developed for the limiting two-
dimensional cases of plane strain and plane stress. 

 
1. INTRODUCTION 

The structure of fully three-dimensional crack tip fields is fundamental to fracture mechanics. The 
problem has been usefully simplified into the important limiting cases of plane strain and plane 
stress deformation. Under plane strain deformation a family of crack tip fields which depend upon 
constraint have been identified by Du and Hancock [4]. The fields depend upon the T-stress, which 
is the first non-singular term in the Williams [2] expansion. Positive T-stresses allow the 
development of the fully constrained Prandtl field which is the limit of the HRR fields in the limit 
of non-hardening plasticity. Negative (compressive) T-stresses cause a loss of constraint, through a 
family of deviatorically similar but hydrostatically different crack tip fields. Crack tip constraint 
may be lost due to either in-plane effects associated with non-singular crack tip terms (Betegon and 
Hancock [5], O’Dowd and Shih [6]), or by out-of-plane effects associated with the finite thickness 
of a test specimen and deviations from plane strain conditions. Under elastic perfectly-plastic 
conditions the plane stress field has been discussed by Sham and Hancock [7]. The present work 
addresses constraint loss in the full three-dimensional problem, which combines constraint loss 
effects due to in-plane effects and out-of plane effects, under conditions in which the plastic zone is 
small compared to the in-plane dimensions, but allowed to vary with respect to the plate thickness, 
and thus fall outside the ASTM [8] limits for small scale yielding. 
 

2. NUMERICAL METHODS 
Crack tip plasticity in a finite thickness plate has been studied by modelling the near tip domain as 
a circular disk with a radial through thickness crack as shown in Figure 1. Both right handed 
Cartesian (x1, x2, x3) and cylindrical (z, r, θ) co-ordinate systems centred at the crack tip are used, 
such that a straight crack front is located on the x3-axis, and the crack flanks lie along on the (x2 = 
0) plane. The radius to thickness ratio of the disk ensured that the radius of the plastic zone was 
small compared to in plane dimensions, while enabling plasticity to develop over scales which 
were allowed to become large compared to the plate thickness. Under mode I loading the problem 
has reflective symmetry with respect to both the mid-plane (x3 = 0) and the crack plane (x2 = 0), 



allowing the geometry to be represented by a symmetric quarter that was modelled with first order 
eight noded brick, as illustrated in Figure 2. The elements were focused at the crack tip while 
maintaining a constant angular span of 100. An identical mesh structure was repeated along the 
crack front from the mid-plane (x3 = 0) to the free surface (x3/t =1/2),   refining the mesh toward the 
free surface. 
 At the crack tip element, aspect ratios capable of giving reliable numerical results were 
developed using two levels of sub-structuring, as illustrated in Figure 2. An outer-mesh, with a 
radius to thickness ratio (r/t) of 100 modelled the overall configuration. The outer-mesh comprised 
360 elements arranged as a single layer of 20 circumferential rings of 18 elements. Displacement 
boundary conditions corresponding to a mode I plane stress crack-tip stress field were imposed on 
the outer perimeter using the mode I stress intensity factor K as a loading parameter, allowing the 
out of plane displacement u3 to remain a free variable. 
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Here G is the shear modulus, and κ = (3 - υ)/(1 + υ) for plane stress, where υ is Poisson’s ratio. 
The outer elastic field was checked against the corresponding plane stress field to be of the form: 
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where fij are universal functions of angle (θ ). To achieve mesh refinement in both the radial and 
through thickness directions, displacements from the outer mesh were interpolated to nodes on the 
outer boundary of an intermediate mesh. This comprised 1350 elements disposed in 5 layers 
through the half thickness, (t /2). The intermediate mesh was further sub-structured to a near-tip 
mesh, which was designed to provide accurate solutions of field variables near the crack front. The 
near tip mesh consisted of 7776 elements in 16 layers through the half thickness, the radial extent 
of the near tip mesh being close to 5t. The crack tip was modelled with 18 rings of 8 noded tri-
linear hexahedron elements collapsed to give 19 coincident but independent nodes at the tip. The 
near tip was resolved with elements having a radius of 5t/1000, while the field at the intersection of 
the crack front with the free surface was identified using an element thickness of t/1000. 

Two–dimensional plane strain and plane stress crack tip fields were established using two-
dimensional boundary layer formulations (Rice and Tracey [10]) without sub-structuring. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The material response was idealised as elastic perfectly-plastic, with a uniaxial yield stress σo and a 
corresponding tensile strain ε0. At stresses less than the yield stress ( oσ≤σ ) a homogenous 

isotropic elastic response was adopted using a Poisson ratio 0.49, which results in close to 
incompressible deformation. The stress-strain relation was generalised for multi-axial stress states 
of stress using the Mises yield criterion and an associated flow rule to describe incremental 

Figure 1: Circular Disk representing a thin plate. 
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Figure 2 (a), (b), (c): FE model of Outer, 
Intermediate, and Near Tip mesh respectively. 
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plasticity within a framework of small strain deformation. The modified B-bar method discussed 
by Nakamura et al. [11] was used to stabilise the model against spurious pressure modes. 

The applied load is quantified by the non-dimensional loading parameter Jfar/σ0ε0 where 
Jfar ,  J-integral at the outer boundary, was determined from the applied stress intensity factor K .  
Local value of the J-integral along the crack front was determined by domain integral methods 
implemented in ABAQUS [9]. The local T-stress along the crack front was determined under 
elastic conditions by an interaction integral method described by Nakamura and Parks [12] as 
implemented in ABAQUS [9]. 
 

3. RESULTS 
Although the remote loading is uniform, the intensity of the loading may vary along the crack front 
as quantified by the local values of the J-integral, Jlocal. Figure 3 shows Jlocal

 along the crack front at 
four load levels, Jfar/σ0ε0 = 1, 3, 5, 8. The local values of J are amplified over the remotely applied 
value of J near the mid-plane but attenuated near the free surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The variation in the local T-stress along the crack front in a thin elastic plate is shown in 
Figure 4. Even if no T-stress is applied in the remote field, the configuration develops an inherently 
positive (tensile) T-stress that increases markedly towards the free surface. It is therefore necessary 
to distinguish between a the local values of the T-stress and that in the remote boundary layer field, 
Tapplied .  The proximity to plane strain conditions along the crack front can be quantified by an out 
of plane constraint parameter σzz/(σθθ + σrθ) that is shown in Figure 5. In incompressible plane 
strain deformation this parameter is 0.5 and approaches zero as proximity to plane strain is lost. On 
the mid-plane this parameter approaches 0.5 indicating that the deformation is close to plane strain 
conditions but decays with distance from the mid-plane and the crack tip as shown in Figure 5.  

The development of plasticity depends on the local variation in J and the constraint along 
the crack front. On the centre plane the plastic zone shape is similar to the two-dimensional plane 
stress field. The development of plasticity at the free surface is illustrated in Figure 6, in which 
absolute distances are non-dimensionalised by Jlocal /σ0. Initially the free surface plastic zone shape 
is distinctly different, although it recovers the plane stress shape at higher levels of deformation as 
the plastic zone becomes larger than the plate thickness. 

Under elastic-perfectly plastic deformation the crack tip stresses are finite, and were 
obtained by extrapolating to the tip along radial lines at 10o intervals using a post processing 
routine. The crack tip stresses for the three-dimensional field in which loading is only based on the 
stress intensity factor  (Tapplied = 0) are shown in Figures 7 and 8 
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Figure 4: Variation of T-stress along the crack front 
in a thin elastic plate with Poisson’s  ratio = 0.49 

Figure 3: Local J normalised by remote J,  
along half-crack front at load levels: 1, 3, 5, 8. 
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Figure 7 shows the stresses on the mid-plane (z/t = 0) compared with the two-dimensional (T = 0) 
plane strain field, which is shown with broken lines. The stress field on the free surface (z/t =0.5) is 
shown in Figure 8, where it is compared to the two-dimensional (T = 0) plane strain field. It is also 
relevant to compare the free surface field with the two-dimensional plane stress field shown in 
Figure 9. Figure 10 shows the crack tip stress field for Tapplied = -0.5σo. The compressive T-stress 
results in a loss in constraint in the leading sectors of the field, paralleling the effect in the two-
dimensional plane strain field.  

Figure 8: Cylindrical stresses for 3D non hardening  
solution at z/t = 0.5, (T = 0)  
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Figure 10: Cylindrical stresses for the 3D non- 
hardening (T = -0.5σ0) Tapp = -0.5σo   at a load level 
8. 
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Figure 9: Cylindrical stresses for the 2D plane stress non-
hardening solution. 

θ 

σij 
σo 

Figure 6: Plastic zone boundary for load levels 1, 
3, 5, 8 at z/t = 0.5 
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Figure 7: Cylindrical stresses for 3D non hardening, at  
z/t =0. (T = 0) solution at z/t =0 
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Figure 5: Out of plane of plane constraint parameter at 
load level 8. 
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4. DISCUSSION 
It is remarkable that on the mid-plane, the three-dimensional solution is close to the two-

dimensional plane strain solution, even at deformation levels of Jfar/σ0ε0 = 8, when the maximum 
radius of the plastic zone is more than twice the plate thickness. A more detailed presentation of the 
hoop stress directly ahead of the crack is given in Figure 11. On the mid-plane (z/t = 0) the hoop 
stress and associated constraint initially rise with deformation. Du and Hancock [4] and Betegon 
and Hancock [5] have discussed the effect of the T-stress on the hoop stress and constraint level. 
The current configuration develops an inherently tensile (positive) T-stress, which varies along the 
crack front as shown in Figure 12. As the T-stress is proportional to the applied load, T is close to 
zero at the lowest load level (Jfar/σ0ε0 = 1), and the stress field at the mid–plane corresponds to the 
T = 0, two-dimensional plane strain solution. However as the load level rises, T becomes tensile 
(more positive) on the mid-plane resulting in an increase in constraint, and stress levels 
approaching the fully constrained Prandtl field. The full three-dimensional solution also exhibits 
plasticity at all angles around the crack tip, which is a feature of the (T > 0) two-dimensional plane 
strain solutions. The two-dimensional (T = 0) plane strain field exhibits an elastic wedge on the 
crack flanks, which disappears when T becomes tensile and expands when T becomes compressive. 
This feature is also shown by the three-dimensional field when T becomes negative. Although the 
T-stress becomes even more markedly tensile close to the free surface the stress field here is 
dominated by the loss of out of plane constraint effects.  

The asymptotic stress field on the free surface shown in Figure 9 may be compared to the 
two-dimensional plane stress field, shown in Figure 10.  Plane stress requires that two condition are 
met: 
 
   = 0     = 0    (3) 
  
The condition is met at the free surface. However the second set requiring that there are no stress 
gradients in the through thickness direction is not satisfied. Under perfectly elastic conditions this 
results a corner field, which does not exhibit the familiar two-dimensional r-1/2 stress singularity, as 
discussed by Benthem [13]. Under perfectly-plastic conditions both the plane stress and corner 
fields show the familiar r0 dependence, but the structure of the free surface field is completely 
different to that in plane stress. Directly ahead of the crack (θ = 0), the curved fan which is a 
feature of the plane stress field requires that σθθ = 2σrr and σrθ = 0, however directly the corner field 
shows (θ = 0), σθθ = σo,  σrr = σrθ = 0.  
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Figure 11: Normalised opening hoop stress through  
thickness at load levels 1, 3, 5, 8. 
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5. CONCLUSIONS 
Three dimensional elastic perfectly-plastic crack tip fields in thin plates exhibit high levels of 
constraint, associated with near plane strain deformation even when the radius of the plastic zone is 
very much greater than the plate thickness. The three-dimensional configuration generates an 
inherently positive T-stress which tends to counteract the loss of constraint due to out of plane 
effects. However compressive applied T-stresses in the far field reduce constraint near the mid-
plane in three-dimensional configurations in the same way that occurs in two-dimensional plane 
strain fields. Constraint is also lost due to out of plane effects and the departure from plane strain 
conditions as the free surface is approached along the crack front. The free surface field is however 
distinctly different to the two-dimensional plane stress field due to the significance of strong out of 
plane stress gradients.  
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