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ABSTRACT 

We present fiber bundle models of creep rupture of fiber composites considering two different microscopic 
mechanisms that can lead to time dependent macroscopic behavior: (i) the fibers themselves are visco-elastic showing 
time dependent deformation under a constant load and break when their deformation exceeds a stochastically 
distributed threshold value. (ii) The fibers are linearly elastic until they break in a stochastic manner, however, the 
load on them does not drop down to zero instantaneously after breaking, due to the creeping matrix, they undergo a 
slow relaxation process. Assuming global load sharing following fiber failure, we show by analytic calculations and 
computer simulations in both models that increasing the external load a transition takes place in the system from a 
partially failed state of infinite lifetime to a state where global failure occurs at a finite time. It was found that 
irrespective of the details of the two models, a universal behavior emerges in the vicinity of the critical point: the 
relaxation time and the lifetime of the composite exhibit a power law divergence with an exponent independent of the 
disorder distribution of fiber strength. Above the critical point the lifetime of the bundle has a universal scaling with 
the system size.  On the micro level the process of fiber breaking is characterized by a power law distribution of 
waiting times between consecutive fiber breaks below and above the critical load. 
 

1  INTRODUCTION 
Under high steady stresses, materials may undergo time dependent deformation resulting in failure called 
creep rupture which limits their lifetime, and hence, has a high impact on their applicability in 
construction elements. Creep failure tests are usually performed under uniaxial tensile loading when the 
specimen is subjected to a constant load σo and the time evolution of the damage process is followed by 
recording the strain ε of the specimen and the acoustic signals emitted by microscopic failure events.  
Theoretical studies of creep rupture encounter various challenges: on the one hand, applications of fiber 
composites require the development of analytical and numerical models which are able to predict the 
damage histories of loaded composites in terms of the characteristic parameters of the constituents. On 
the other hand, it is important to reveal universal aspects of creep rupture phenomena, which are 
independent of specific material properties relevant on the microlevel. In this paper we study the creep 
rupture of fiber composites by means of fiber bundle models (Daniels [1]) considering two different 
microscopic mechanisms that can lead to macroscopic creep behavior. Assuming global load sharing 
among fibers, analytical and numerical calculations show that in both models there exists a critical load 
that determines the final state of the material. Our detailed study revealed that irrespective of the details 
of the models a universal behavior of the fiber bundle emerges in the vicinity of the critical point. 
 

2  FIBER BUNDLE MODELS OF CREEP RUPTURE 
 

2.1  Viscoelastic fibers 
 
Our model consists of N parallel fibers having viscoelastic constitutive behavior.  For simplicity, the pure 
viscoelastic behavior of fibers is modeled by a Kelvin-Voigt element which consists of a spring and a 
dashpot in parallel and results in the constitutive equation εεβσ E+= &0 , where σ0 is the external load, 



β denotes the damping coefficient, and E the Young modulus of fibers, respectively.  In order to capture 
failure in the model a strain controlled breaking criterion is imposed, i.e. a fiber fails during the time 
evolution of the system when its strain exceeds a breaking threshold εi, i=1,…N drawn from a probability 

distribution P(ε)= ∫
ε

0

)( dxxp . For the stress transfer between fibers following fiber failure we assume that 

the excess load is equally shared by all the remaining intact fibers (global load sharing), which provides a 
satisfactory description of load redistribution in continuous fiber reinforced composites.  
 

Figure 1: a) The viscoelastic fiber bundle model. Intact fibers are modeled by Kelvin-Voigt elements.b) 
ε(t) for several different values of the external load σo below and above σc.  
 
 
     For the breaking thresholds of  fibers a uniform distribution between 0 and 1, and a Weibull 
distribution of the form ( )[ ]ρλεε /exp1)( −−=P  were considered. The construction of the model is 
illustrated in Fig. 1a). In the framework of global load sharing many of the quantities describing the 
behavior of the fiber bundle can be obtained analytically. In this case the time evolution of the system 
under a steady external load σο is described by the differential equation  
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where the viscoelastic behavior is coupled to the failure of fibers. The viscoelastic fiber bundle model 
with the equation of motion eqn. (1) can provide an adequate description of natural fiber composites like 
wood subjected to a constant load (Gerhards [2]). For the behavior of the solutions ε(t) of eqn. (1) two 
distinct regimes can be distinguished depending on the value of the external load σo: When σo  falls below 
a critical value σc eqn. (1) has a stationary solution εs, which can be obtained by setting 0=ε& , i.e. σo = 
Eεs[1-P(εs)]. It means that until this equation can be solved for εs at a given external load σo, the solution 
ε(t) of eqn. (1) converges to εs  when t ∞→ , and the system suffers only a partial failure. However, 
when σo exceeds the critical value σc no stationary solution exists, furthermore, ε&  remains always 
positive, which implies that for σo >σc the strain of the system ε(t) monotonically increases until the 
system fails globally at a finite time tf (Hidalgo [3], Hidalgo [4], Hidalgo [5]). The behavior of ε(t) is 
illustrated in Fig. 1b) for several values of σo below and above σc with uniformly distributed breaking 
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thresholds. It follows from the above argument that the critical value of the load σc is the static fracture 
strength of the bundle. The creep rupture of the viscoelastic bundle can be interpreted so that for co σσ ≤  
the bundle is partially damaged implying an infinite lifetime tf ∞=  and the emergence of a stationary 
macroscopic state, while above the critical load σo  > σc global failure occurs at a finite time tf, but in the 
vicinity of σc the global failure is preceded by a long lived stationary state. The nature of the transition 
occurring at σc can be characterized by analyzing how the creeping system behaves when approaching the 
critical load both from below and above. 

 
Figure 2: a) Lifetime tf of the bundle as a function of the distance from the critical point σ0-σc  for  σ0 >σc . 
b) tf as a function of the number of fibers at a fixed value of the external load σ0. Results of computer 
simulations (symbols) are in a good agreement with the analytic predictions (solid lines). 
 
For  co σσ ≤  the fiber bundle relaxes to the stationary deformation  εs through a gradually decreasing 
breaking activity. It can be shown analytically that ε(t) has an exponential relaxation to εs with a 
characteristic time scale τ that depends on the external load σ0 as 2/1)( −−∝ oc σστ  for σ0  < σc, i.e., 
when approaching the critical point from below the characteristic time of the relaxation to the stationary 
state diverges according to a universal power law with an exponent -1/2 independent on the form of 
disorder distribution P. Above the critical point the lifetime tf defines the characteristic time scale of the 
system which can be cast in the form  2/1)( −−∝ coft σσ for σ0  > σc  so that tf also has a power law 
divergence at  σc with a universal exponent -1/2 like τ below the critical point, see Fig. 2a). Hence, for 
global load sharing the system exhibits scaling behavior on both sides of the critical point indicating a 
continuous transition at the critical load σc.  It can also be shown analytically that fixing the external load 
above the critical point, the lifetime tf of the system exhibits a universal scaling NtNt ff /1)()( ∝∞−  
with respect to the number N of fibers of the bundle (Fig. 2b) (Hidalgo [3], Hidalgo [4], Hidalgo [5]).  
 
2.  Slowly relaxing fibers  

 
Another important microscopic mechanism which can lead to macroscopic creep is the slow relaxation 
following fiber failure. In this case, the components of the solid are linearly elastic until they break, 
however, after breaking they undergo a slow relaxation process, which can be caused, for instance, by the 



sliding of broken fibers with respect to the matrix material or by the creeeping matrix, which is a typical 
mechanism for metal matrix composites reinforced by long brittle fibers. To take into account this effect, 
our approach is based on the model introduced in (Ibnabdeljalil [6], Du [7], Fabeny [8]), where the 
response of a viscoelastic-plastic matrix reinforced with elastic and also viscoelastic fibers have been 
studied. The model consists of N parallel fibers, which break in a stress controlled way, i.e. subjecting a 
bundle to a constant external load fibers break during the time evolution of the system when the local load 
on them exceeds a stochastically distributed breaking threshold σi, i=1,…,N. Intact fibers are assumed to 
be linearly elastic i.e. σ=Efef holds until they break, and hence, for the deformation rate it applies 

ff E/σε && =  Here εf denotes the strain and Ef is the Young modulus of intact fibers, respectively.  

 
Figure 3: a) The bundle of slowly relaxing fibers. Broken fibers are modeled by Maxwell elements. b) ε(t) 
as a function of time for several different values of σ0 below and above the critical load σc.  
 
The main assumption of the model is that when a fiber breaks its load does not drop to zero 
instantaneously, instead it undergoes a slow relaxation process introducing a time scale into the system. In 
order to capture this effect, the broken fibers with the surrounding matrix material are modeled by 
Maxwell elements as illustrated in Fig. 3a), i.e. they are conceived as a serial coupling of a spring and a 
dashpot which results in a non-linear response   m

bbbb BE σσε += /&&  , where σb and εb denote the time 
dependent load and deformation of a broken fiber, respectively. The relaxation of the broken fiber is 
characterized by three parameters Eb, B, and m, where Eb is the effective stiffness of a broken fiber, and 
the exponent m characterizes the strength of non-linearity of the element.  We study the behavior of the 
system for the region 1≥m . Assuming global load sharing for the load redistribution, the differential 
equation governing the time evolution of the load σ on the intact fibers during the fradual breaking 
process can be cast in the form  
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Subjecting the undamaged specimen to an external stress σ0 all the fibers attain this stress value 
immediately due to the linear elastic response. Hence the time evolution of the system can be obtained by 
integrating eqn. (2) with the initial condition σ(t=0) = σ0.  Since intact fibers are linearly elastic, the 
deformation-time history ε(t) of the model can be deduced as ε(t) = σ(t)/Ef, which has an initial jump to 
εo = σ0/Ef. It follows that those fibers which have breaking thresholds σi smaller than the externally 



imposed σ0 immediately break. Similarly to the previous model, two different regimes of σ(t) can be 
distinguished depending on the value of σ0: if the external load is smaller than a critical value σc a 
stationary solution σs of the governing equation exists. If the external load falls above the critical value 
the deformation rate fE/σε && = remains always positive resulting in a macroscopic rupture in a finite 
time tf as it is illustrated in Fig. 3b). It follows that the critical load σc of creep rupture coincides with the 
static fracture strength of the composite (Kun [9]).     

 
Figure 4: a) Lifetime tf  of the bundle as a function of the distance from the critical point for two values of 
the stress exponent m obtained by computer simulations. b) The scaling behavior of the lifetime tf at a 
fixed load value as a function of the number of fibers N.   
 
The behavior of the system shows again universal aspects in the vicinity of the critical point. Below the 
critical point the relaxation of σ(t) to the stationary solution σs is governed by a differential equation of 
the form dδ/dt ~ δm, where δ denotes the difference δ(t) = σs - σ(t). Hence, the characteristic time scale τ 
of the relaxation process only emerges if m=1, furthermore, in this case also ( ) 2/1

0
−−∝ σστ c holds 

when approaching the critical point. Similarly to the previous model, it can also be shown that the lifetime 
tf of the bundle has a power law divergence when the external load approaches the critical point from 

above 
( )2/1

0
−−

⎟
⎠
⎞⎜

⎝
⎛∝ − m

cft σσ  for σ0 > σc.  The exponent is universal in the sense that it is independent on 
the disorder distribution, however, it depends on the stress exponent m, which characterizes the non-
linearity of broken fibers, see Fig. 4a).  The lifetime tf  of the bundle at a fixed external load above the 
critical point converges to the lifetime of the infinite bundle )(∞ft  with increasing number of fibers as 
1/N, which can be seen in Fig. 4b) (Kun [9]). 
 
The process fiber breaking on the micro level can easily be monitored experimentally by means of the 
acoustic emission techniques. Except for the primary creep regime where a large amount fibers break in a 
relatively short time, the time of individual fiber failures can be recorded with a high precision. In order 
to characterize the process of fiber breaking we calculated numerically the distribution f of waiting times 
∆t between consecutive breaks in the two models (Kun [10]). A detailed analyses revealed that f(∆t) 
shows a power law behavior f(∆t)~ ∆t-b on both sides of the critical point (Kun [10]). The exponents are 
different below and above the critical load, however, they are independent of the disordered properties of 
the fibers, see Fig. 5.  
 



 
 

3  DISCUSSION 
We presented two models of creep rupture of fiber composites with two different microscopic 
mechanisms that can lead to macroscopic creep behavior. The first model can be relevant for natural fiber 
composites such as wood, which is composed of viscoelastic fibers, while the second model can provide 
an adequate description of metal matrix composites reinforced by brittle fibers. Based on the models, we 
explored universal aspects of the creep response of materials, which are important to clarify the analogy 
between creep rupture of materials and phase transitions, and can also be relevant for materials design. 
Our results are in a good qualitative agreement with the experimental findings on the creep rupture of 
fiber composites (Weber [[11], Gambone [12], Weber [13], Faucon [14]). 

Figure 5: Distribution of waiting times between two consecutive fiber breaks below and above the critical 
load. Simulation results for 10 million fibers.  
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