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ABSTRACT

A probabilistic fatigue damage analysis procedure which is coupled to a structural health moni-

toring system is discussed. The conceptual monitoring system includes a pair of ultrasonic sensors

- a narrowband SAW generator and a harmonically matched SAW receiver. The sensors provide

information of the current level of damage by monitoring the second harmonic in the SAW signal as

a function of loading and number of cycles. This information is then transferred to the probabilistic

fatigue damage analysis procedure for probabilistic forecasting of the damage evolution of the com-

ponent. Here we report preliminary results obtained by applying this methodology to experimental

data.

1 INTRODUCTION

The usefulness of the damage-tolerance philosophy for life predictions of components is
critically dependent on the ability of the NDE technique to accurately and reliably monitor
damage. In materials such as high strength steels undergoing fatigue, critical damage in the
form of a crack of detectable but very small length, often occurs late in the lifetime of a
component. When a detectable crack has developed out of microscopic damage processes, it
grows to an unacceptable length in a time that is short as compared to the total lifetime of
the component. Therefore in order to apply the damage-tolerant philosophy in such cases,
it is essential to develop a monitoring system to monitor pre-crack damage. The present
paper foresees a structural health monitoring system to monitor the pre-crack damage, whose
sensor output is used in a fatigue damage evolution model to predict the remaining life of the
component. Probabilistic damage deveopment is evaluated using Monte Carlo integration
with Importance Sampling.

2 STRUCTURAL HEALTH MONITORING SYSTEM

In the approach of this paper, the structural health monitoring system is represented by a
pair of harmonically matched ultrasonic transducers which measure the acoustic nonlinear-
ity in the component. The acoustic nonlinearity A2/A1, defined as the ratio of the second
harmonic amplitude A2 to the fundamental amplitude A1, quantifies the extent to which an
ultrasonic wave is distorted as it propagates through a material that has been subjected to
fatigue loading (see e.g. Morris et. al. [1]). Ogi et. al [2] have observed that the acoustic
nonlinearity increases nearly monotonically, and shows a distinct peak at the point of macro-
crack initiation. This phenomenon can be attributed to the changes in the microstructure
which is a direct consequence of the accumulated fatigue damage.



3 DAMAGE MODEL

This section presents a damage model whose evolution represents the evolution of the non-
linearity up to the point of macrocrack initiation. The state of damage in a specimen at
a particular cycle during fatigue is represented by a scalar damage function D(N). The
magnitude D = 0 corresponds to no damage, and D = 1 corresponds to the appearance of
the first macrocrack. The following phenomenological model, which is a modification of the
model proposed in Bolotin [3](pg. 98), is assumed to represent the evolution of the damage
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Here, Nc is a normalizing constant, σmax is the maximum stress in a cycle, rc(σ̄) is the
endurance limit when the mean stress in a cycle is σ̄, m > 0 is a material parameter
and f(σmax, σ̄) > 0 is a function of the stress. The dependence of the exponent of the
damage variable on the stress ensures that the model leads to nonlinear accumulation of
damage (see Lemaitre and Chaboche [4], pg. 420). In the present paper it is assumed that
f(σmax, σ̄) = n σmax/rc(σ̄). Both m and n are estimated using nonlinear regression. It is
also assumed that rc(σ̄) follows the Goodman relation (see Goodman [5]), i.e.
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where σult is the ultimate tensile strength of the material. For cyclic loading where σmax

and σ̄ are constant with σmax always greater than rc(σ̄), Eq. (1) can be solved to obtain
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Here D0 is the initial damage present in the specimen. To find the number of cycles needed
for macrocrack initiation, D = 1 is substituted in Eq. (2) to obtain

Nini =
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4 PROBABILITY OF MACROCRACK INITIATION

The procedure for calculation of the probability of macrocrack initiation is described in
this section. Depending on the problem under consideration, the quantities appearing
in Eq. (3) are suitably randomized. Let X = [X1 X2 . . . Xk]T denote the random
quantities (for example, for a problem with known constant stress cycles, the quantities
rc(σ̄), D0, m and n can be considered random with known probability distribution and
X = [X1 X2 X3 X4]

T = [rc(σ̄) m n D0]
T ). Let fX(x) denote the joint probability

distribution of X. To determine the probability of macrocrack initiation Pma, i.e. the prob-
ability that the number of cycles to macrocrack initiation, Nini, will be less than a specified
number of cycles Ns, one first defines a limit state surface given by

g = Nini − Ns.



To account for the inspection process, let Ninsp denote the cycle number at which an
inspection is carried out and let Dinsp denote the damage at that cycle. If no macrocrack
is observed at Ninsp then it follows that Dinsp < 1. To account for the inherent scatter in
the damage measurements, the following inequality

Dinsp < Dactual < 1 (4)

is assumed, where Dactual is the actual damage in the specimen at Ninsp. Note that
this is a conservative approach and it is possible that Dactual < Dinsp. Also note that
since it is assumed that the model represents the evolution of the damage exactly, one has
D(Ninsp) = Dactual, where D(Ninsp) is the damage predicted by the model (see Eq. (2))
at N = Ninsp. Therefore the inequality in Eq. (4) can be replaced by

Dinsp < D(Ninsp) < 1. (5)

Let E denote the event Dinsp < D(Ninsp) < 1. Then the probability of macrocrack
initiation Pma, taking into account the inspection at Ninsp, is given by

Pma ≡ Pr(Nini < Ns|E) =
Pr((Nini < Ns) ∩ E)

Pr(E)
. (6)

To calculate this probability, the two probabilities occurring on the right hand side of Eq.
(6) are evaluated separately. To do this, it is first necessary to represent the event E in the
space of random variables. This is achieved by defining a function h(x), such that
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From Eq. (2) it follows that Eq. (5) is equivalent to Dinsp < 1− h(x) < 1. This statement
is equivalent to

0 < h(x) < 1 − Dinsp

which represents the event E in the space of random variables. Eq. (2) shows that at
N = Ninsp, the surface h(x) = 0 corresponds to D(Ninsp) = 1, and the surface h(x) =
1−Dinsp corresponds to D(Ninsp) = Dinsp. The probability of the event E is now given
by

Pr(E) =

∫

0<h(x)<1−Dinsp

fX(x)dx (7)

and

Pr((Nini < Ns) ∩ E) =

∫

(g(x)<0)∩(0<h(x)<1−Dinsp)

fX(x)dx. (8)

To evaluate the integrals appearing in Eqs. (7) and (8), the random variables are first
mapped via a Rosenblatt transformation (see Rosenblatt [6]) into a standard Gaussian space
where the random variables denoted by U = [U1 U2 . . . Uk]T are independent, normally
distributed and have zero mean and unit standard deviation. The modified Hasofer-Lind,
Rackwitz-Fiessler (HL-RF) algorithm described in Kiureghian and Liu [7] is used to obtain
the point closest to the origin on the surface g(u) = 0 which is denoted by u

∗. In the modified
HL-RF algorithm, one adjusts the step size during each iteration to obtain a sufficient
decrease in the merit function which is based on the first order optimality conditions. Monte
Carlo integration with importance sampling, with the sampling density centered at u

∗ (see
Fujita and Rackwitz [8]) is then used to calculate the integrals in Eqs. (7) and (8).



5 SAMPLE PROBLEM

The procedure described in the paper is applied to the data, viz. acoustic nonlinearity as
a function of number of cycles, (e. g. see Ogi, et.al [2] for details) and the probability of
macrocrack initiation is calculated. The yield strength of the material is 333 MPa specimen
and it is subjected to a maximum bending stress of 280 MPa. The endurance limit of the
material at zero mean stress, rc(0), is assumed to be 180 MPa. Table (1) shows the acoustic
nonlinearity measured as a function of number of cycles. It is observed that the evolution of

Table 1: Measured Values of Acous-
tic Nonlinearity during Successive Inspec-
tions

j Ninspj (A2/A1)j × 10−3

0 0 0.90
1 11200 0.80
2 22400 0.90
3 26880 1.50
4 30800 2.00
5 33040 2.50
6 34000 3.10

Table 2: ‘Measured’ Values of Damage
during Successive Inspections

j Ninspj Dinspj

0 0 0
1 11200 0.2462
2 22400 0.2769
3 26880 0.4615
4 30800 0.6154
5 33040 0.7692
6 34000 0.9539

the acoustic nonlinearity is not strictly monotonic during the initial stages of fatigue. The
damage is obtained by normalizing the nonlinearity measurements by the expected maxi-
mum value of the nonlinearity. This assumes that there exist a linear mapping between the
acoustic nonlinearity and the accumulated damage. For the given problem the maximum
value is assumed to be 3.25×10−3. It is also assumed that the specimen is initially undam-
aged, i.e. Dinsp0 = 0. The ‘measured’ damage which is calculated from the corresponding
nonlinearity measurements is tabulated in Table (2). Using the values of damage given in
Table (2), the parameter m and n are calculated using nonlinear regression (e.g. see Draper
and Smith [9]). The values are calculated starting from the third inspection. It is assumed
that the damage values from 0 . . . j inspections are available to calculate m and n at the
j inspection. The probability of macrocrack initiation is then calculated by assuming that
σmax, σ̄, Nc and D0 are fixed quantities while rc(0), m and n are independent random quan-
tities each having a lognormal distribution The mean and standard deviation of m and n is
obtained from nonlinear regression. The following values are used for the fixed quantities:
σmax = 280 MPa, σ̄ = 0 MPa, Nc = 10000, rc(0) = 180 MPa and D0 = 0. The random
variable rc(0) is assumed have a mean of 180 MPa with a standard deviation of 5.4 MPa.
The probability of macrocrack initiation is calculated as described in Section after each
inspection for different Ns and is given in Table (3).

Note that for the fatigue problem described, the first macrocrack is observed at ap-
proximately 34160 cycles (see Ogi et. al. [2]). As seen from Table (3), the formation of
the macrocrack is predicted quite well in spite of using a simple damage model and making
simple assumptions regarding the parameters involved in the model. The results presented
in the present paper also compare favourably with the results presented in Kulkarni et. al.
[10] in which a different modification of Bolotin’s damage accumulation model (see Bolotin
[3]) is used.



Table 3: Calculation of Pma

Cycles Pma

Ns 3rd Insp 4th Insp 5th Insp 6th Insp
(Ninsp = 26880) (Ninsp = 30800) (Ninsp = 33040) (Ninsp = 34000)

30000 0.04353 0.00000 0.00000 0.00000
31000 0.06201 0.05629 0.00000 0.00000
32000 0.08248 0.32226 0.00000 0.00000
33000 0.10558 0.54982 0.00000 0.00000
34000 0.13155 0.72169 0.84881 0.00000
35000 0.15705 0.83928 0.99456 1.00000
40000 0.32432 0.99690 1.00000 1.00000
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