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ABSTRACT

In the framework of irreversible thermodynamics of nonlocal continua, the Clausius-Duhem in-

equality enriched by the addition of two (nonlocality) energy residuals (one for elasticity, the other

for damage) is employed to devise a coupled nonlocal elastic/nonlocal damage phenomenological

constitutive model. With a particular choice of the nonlocal variables (average of the strain dif-

ference and of the kinematic internal variable (k.i.v) difference), the constitutive model turns out

to satisfy the criterion in virtue of which, in the case of macroscopically uniform strain and k.i.v.,

both energy residuals vanish identically hence all the state equations collapse into their local

forms and as consequence all the state variables (stress, energy release force, damage hardening

force) take on their respective local values. Furthermore, the inhomogeneity of the elastic moduli

tensor, caused by damage, reflects on the greater attenuation effects upon the long distance par-

ticle interactions, which are accounted for through the equivalent distance. This replaces the

Euclidean (or geodetical) distance as argument of the attenuation function and increases with the

damage variation along the optimal path (while the internal length is taken constant).

Linear isotropic damage is considered, with the nonlocality introduced through the k.i.v. con-

trolling the related hardening effects. The above thermodynamic procedure leads to the (nonnega-

tive) intrinsic damage dissipation density having the shape of a bilinear form. The damage evolutive

law is then formulated through the normality rule, such that a maximum dissipation principle can

be shown to hold.

1. INTRODUCTION

Nonlocal damage is here addressed within a constitutive ambient of nonlocal elasticity in

the intent to provide a coupled formulation useful for the treatment of many problems of

engineering practice, e.g. fracture mechanics and composite materials. Coupling nonlo-

cal elasticity with (either local or nonlocal) damage is not a trivial task, but raises a few

theoretical difficulties.

A first difficulty arises from the fact that the usual nonlocal elasticity theory (e.g. Erin-

gen [1], Bažant and Jirásek [2], Polizzotto [3]) holds for (macroscopically) homogeneous

materials and it incurs into thermodynamic inconsistencies if applied within a context in

which the material cannot be considered homogeneous due to the degradation effects pro-

duced by damage. A second difficulty is that the Euclidean (or geodetical) distance turns out



to be, in the presence of damage, inadequate to account correctly for the attenuation effects

upon the long distance particle interactions, since in fact, as pointed out by Polizzotto et

al. [4], the (damage induced) inhomogeneity makes the attenuation effects increase beyond

the values pertaining to the undamaged (homogeneous) material, till full attenuation for the

failed material.

Polizzotto et al. [4] provided a nonlocal elasticity model for microscopically inhomoge-

neous material (but constant internal length parameter), in which both difficulties mentioned

above are overcome. The therein proposed strain-difference-based nonlocal elasticity model

is centered upon the concept of equivalence distance, capable to account for the increased

attenuation effects due to the inhomogeneities. Though the model predicts a stress that

coincides with the local stress in the case of uniform strain, however the local elasticity

model fails to be fully recovered correspondingly, since in fact the related nonlocality energy

residual is not identically vanishing in the case of uniform strain as it instead should be in

order to guarantee the complete local behaviour recovering.

The purpose of the present paper is to reconsider the above nonlocal elasticity theory

with reference to the case in which the material inhomogeneity is caused by damage, and

to combine it with nonlocal damage mechanics. The assumption is made that the damage

may manifest itself only within a subdomain of the body, as it often occurs in practice.

For simplicity, the case of linear isotropic damage is considered. Also, because of the irre-

versible nature of the material, a thermodynamic approach is here presented, in which some

guidelines previously devised by Polizzotto [3, 5] are followed.

2. THERMODYNAMIC APPROACH

The starting point is the (positive definite) Helmholtz free energy density (at constant

temperature), which is taken in the form:

ψ =
1

2
ε : D(ω) : ε+

1

2
αA(∆ε) : D(ω) : A(∆ε) + ψin(ξ,Ad(∆ξ)) (1)

where α is a material constant and furthermore

ω: damage variable (0 ≤ ω ≤ 1);

D(ω) := (1− ω)D0: damaged moduli tensor;

∆ε = ∆ε(x,x′) = ε(x′)− ε(x): local strain difference field related to the point x.

A(∆ε) :=
∫

V
g(x,x′)[ε(x′)− ε(x)] dx′: nonlocal strain difference;

ψin = ψin(ξ,Ad(∆ξ)): microstructure free energy potential, a functional of the kine-

matic internal variable (k.i.v.) ξ;

∆ξ = ∆ξ(x,x′) = ξ(x′)− ξ(x): k.i.v difference field;

Ad(∆ξ) :=
∫

V d
gd(x,x′)[ξ(x′)− ξ(x)] dx′: nonlocal k.i.v difference;

g(x,x′) = ḡ(req/`): attenuation function (with finite support) depending on the ratio

between the equivalent distance req(x,x′) (see Section 3) and the internal length `;

gd(x,x′) = ḡ(req/`d): attenuation function related to damage.



The Clausius-Duhem inequality (in isothermal conditions) reads

σ : ε̇− ψ̇ + Pe + Pd ≥ 0 (2)

where Pe and Pd denote the (nonlocality energy) residuals respectively related to purely

elastic and purely damage deformation mechanisms.

Considering only purely elastic deformation mechanisms (hence ω̇ ≡ 0, ξ̇ ≡ 0, Pd ≡ 0),

one can rewrite eqn.(1) as

σ : ε̇− ε : D(ω) : ε̇− αA(∆ε) : D(ω) : A(∆ε̇) + Pe ≥ 0. (3)

After integration over the body domain V , noting that
∫

V
Pe dV = 0 and making use of

the Green-type identity related to the self-adjoint operator A(∆(·)), which can be written

as ∫

V

s : A(∆e) dV =

∫

V

A(∆s) : e dV (4)

and holds for any pair of tensors (e, s), eqn. (3) gives

∫

V

{

σ−D(ω) : ε− αA
[

∆(D : A(∆ε))
]}

: ε̇ dV ≥ 0. (5)

This having to be satisfied for any field ε̇ in V implies the following state equation:

σ = D(ω) : ε+ αA
{

∆
[

D(ω) : A(∆ε)
]}

in V. (6)

Introducing the (symmetric) two-point kernel function

J(x,x′) :=

∫

V

D(ω(z)) g(x, z) g(x′, z) dz−
[

γ(x)D(ω(x)) + γ(x′)D(ω(x′))
]

g(x,x′), (7)

where

γ(x) :=

∫

V

g(x,x′) dx′, (8)

eqn (6) can be rewritten as

σ(x) = D(x) : ε(x) + α

∫

V

J(x,x′) :
[

ε(x′)− ε(x)
]

dx′ (9)

which is formally as proposed in [4]. The residual Pe is found to be

Pe = −ε̇ : A
[

∆
(

D : A(∆ε)
)]

+A(∆ε̇) : D : A(∆ε). (10)

Then let the entire class of elastic-damage deformation mechanisms be considered and

let eqns. (6)–(10) be assumed to continue to hold. Correspondently, inequality (2) takes on

the form

Φ := Y ω̇ − ∂ψin

∂ξ
ξ̇ − ∂ψin

∂Ad(∆ξ)
Ad(∆ξ̇) + Pd ≥ 0 (11)



where Y is the thermodynamic force related to ω̇ (energy release for unit damage), that is,

by eqn (1),

Y := −∂ψ

∂ω
=

1

2
ε : D0 : ε+ α

1

2
A(∆ε) : D0 : A(∆ε), (12)

which is another state equation. By assumption, the intrinsic damage dissipation density,

Φ, has to exhibit a bilinear form in terms of independent fluxes (ω̇, ξ̇) and of related total

thermodynamic forces (Y,X), that is

Φ = Y ω̇ −Xξ̇, (13)

where X is the (unknown) nonlocal total thermodynamic force associated to ξ̇. On compar-

ison of eqn (13) with eqn (11), one has

Pd =
∂ψin

∂ξ
ξ̇ − ∂ψin

∂Ad(∆ξ)
Ad(∆ξ̇)−Xξ̇. (14)

Integration of eqn (14) over the subdomain Vd ⊂ V where damage is allowed to occur

and applying the Green-type identity relative to Ad(∆(·)), one obtains:

∫

Vd

{

∂ψin

∂ξ
+Ad

(

∆
∂ψin

∂Ad(∆ξ)

)

−X

}

ξ̇ dV =

∫

Vd

Pd dV = 0. (15)

This, having to be satisfied for any elastic-damage mechanism and for any possible evolutive

laws of damage, hence for any choice of the ξ̇ field in Vd, gives the further state equation:

X =
∂ψin

∂ξ
+Ad

(

∆
∂ψin

∂Ad(∆ξ)

)

in Vd (16)

Substituting eqn (16) into eqn (14) gives the expression of Pd, namely:

Pd =
∂ψin

∂Ad(∆ξ)
Ad(∆ξ̇)−Ad

(

∆
∂ψin

∂Ad(∆ξ)

)

ξ̇ in Vd. (17)

Observing eqns (10)and (17), it is evident that the residuals Pe and Pd vanish identi-

cally in the case of uniform ε and ξ fields; also, eqns (6), (12) and (16) show that, in this

circumstance, give σ = D : ε, Y = (1/2)ε : D : ε, X = ∂ψin/∂ξ, that is, the local material

behaviour is fully recovered. A similar result was achieved by Borino et al. [6] for a local

elastic/nonlocal damage material model.

3. EQUIVALENT DISTANCE

As pointed out in [4] in the case of inhomogeneous material, there is an increase of the long

distance attenuation effects and the Euclidean (or geodetical) distance is to be substituted

by the greater equivalent distance. This can be achieved by multiplying, the length p(x,x′)

of the generic path Π(x,x′) joining x with x′, by an attenuation factor θ(x,x′) ≥ 1, and

writing the augmented distance as

pa(x,x
′) := θ(x,x′) p(x,x′). (17)



θ(x,x′) is a functional of the inhomogeneities located along Π(x,x′). The latter can be

imagined subdivided into, say, m ≥ 1 segments in each of which the damage ω varies

monotonically from ωk−1 (at the end xk−1) to ωk (at the other end xk), (k = 1, 2, . . . ,m;

x0 = x′, xm = x). Here θ is proposed with the expression

θ(x,x′) := 1 +
m
∑

k=1

Ck
|ηk−1 − ηk|√

ηk−1ηk
(19)

where η := 1 − ω denotes the integrity of the material and the Ck are nondimenisional

constants. The equivalent distance req(x,x′) is given by

req(x,x
′) = min

{Π(x,x′)}

{

θ(x,x′) p(x,x′)
}

(20)

which is not smaller than the geodetical distance given by

r(x,x′) = min
{Π(x,x′)}

p(x,x′). (21)

Note that if η(x) = 0, hence ω(x) = 1 and D(ω)(x) = 0 at any point x ∈ Vd, there it

is σ(x) = 0. In fact, any path Π(x,x′) joining x′ with the considered x is characterized by

θ(x,x′) = ∞, such that req(x,x′) = ∞ hence g(x,x′) = ḡ(req/`) = 0 ∀x′ ∈ V . It follows

that J(x,x′) ≡ 0 by eqn (7), hence σ(x) = 0 by eqn (9).

The definitions given above are formally similar to those given in [4], where η is defined

as an adimensionalized scalar measure of the moduli tensor, namely η = ‖D‖/d = (1 −
ω)‖D0‖/d. Hence, on taking d = ‖D0‖, one obtains η = 1− ω, as previously assumed.

4. DAMAGE EVOLUTIVE LAW

The damage evolutive law has to be formulated in terms of fluxes (ω̇, ξ̇) and the related

thermodynamic forces (Y,X) as suggested by the bilinear form, eqn (13), expressing the

dissipation function Φ. Therefore, on introducing the damage condition:

F = F (Y, x) := Y −X − Y0 ≤ 0, in Vd (22)

and applying the usual normality rule, one can write

ω̇ = ξ̇ = λ̇ ≥ 0, λ̇F = λ̇Ḟ = 0 in Vd. (23)

Here, Y is related to the strain state by eqn (12), but is independent of ω because of the

particular form chosen for the Helmholtz free energy, eqn (1). By this circumstance, it may

be convenient to consider the damage itself as the source of nonlocality, as pointed out by

Borino et al. [6], but this point is not pursued here.

It can be easily shown that the above evolutive law admits a local type maximum

dissipation principle in the form:

Φ = max
(Y,X)

(

Y ω̇ −Xξ̇
)

s.t. F (Y,X) ≤ 0, (24)



where the scalar pair (ω̇, ξ̇) is fixed. Problem (24) provides the material state variables Y,X

under which the material can undergo the damage and the damage hardening mechanisms

(ω̇, ξ̇). The nonlocal nature of the damage constitutive law emerges as soon as the field ξ(x)

is to be evaluated from the field X(x) obtained as solution of eqn (24) at all points x ∈ Vd.

This amounts to solve the integral equation (16) with X = X(x) being known.

5. COMMENTS AND CONCLUSIONS

The results of this paper can be summarized as follows:

I. The phenomenological constitutive model of coupled nonlocal elasticity/nonlocal dam-

age herein presented exhibits the requisite to obey the local constitutive laws in the case

of uniform strain and kinematic internal variable fields, which implies that, correspond-

ingly, the energy residual vanish identically, hence the local elastic-damage behaviour is

fully recovered.

II. The nonlocal-type variables used to enforce the above requisite are of the form A
(

∆(·)
)

,

e.g. A
(

∆ε
)

in the case of strain, that is the average of the strain difference field instead

of simply the strain field. Indeed, ∆(·) turns out to vanish identically whenever the

(·) field is uniform, hence ∆(·) is the nonlocal counterpart of the spatial gradient of (·)
appearing in the gradient theories.

III. The inhomogeneity of the elastic moduli tensor produced by damage is accounted for by

the equivalence distance which replaces the (smaller) Euclidean (or geodetical) distance

r(x,x′) as argument of the attenuation function and simulates the greater attenuation

effects as a consequence of damage (req → ∞ if the material fails along the path from x

to x′).

The present theory deserves being further studied in many aspects, in particular for a com-

parison of the stress-strain law here derived with analogous ones of previous formulations.

Due to the lack of space, this task will be addressed elsewhere.
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