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ABSTRACT 

Self-organized crack patterns have drawn intensive attention recently. For instance, regular micro-cracks   
appear on certain polymer materials spread on substrates when drying. These cracks are generally 
conceived originating from the competition of two effects, i.e. cohesion force between molecules and 
adhesion forces between molecules and substrates. This paper develops a phase field model to study the 
formation and growth of crack patterns of a thin film attached to an elastic substrate. We treat the thin film 
as a superficial object, and specify the excess surface energy for the object. The variation of the surface 
energy density with the variation of the strain defines surface stress. When cracks form in the film, the 
surface stress is nonuniform, deforms the substrate, and reduces the total energy. This energy reduction 
constitutes a driving force for crack nucleation and growth. The model consists of two fields: a 
concentration field C, and a displacement field u. The former phase-field parameter describes the coverage 
of substrate surface with film molecules, and has values between zero and one. The latter represents the 
elastic field in the substrate. A phase boundary in our model is represented by a concentration gradient, an 
approach analogous to the work of Cahn and Hilliard on spinodal decomposition. With this approach we 
avoid solving a moving boundary value problem which would require tracking the boundary numerically. 
Our model is a dynamic model and the material system can generate whatever crack patterns it favors. A 
nonlinear diffusion equation couples the concentration field in the film and the stress field in the substrate. 
An efficient spectral method is developed to solve the problem efficiently. The simulations have revealed 
remarkably rich dynamics in the crack pattern formation process, and produced results consistent with 
experiments. 
 

 
1 INTRODUCTION 

Self-organized crack patterns have drawn intensive attention recently. Consider a thin solid film 
elastically attached to a substrate. When the film contracts, elastic stresses emerges. When the 
stress is high enough, cracks will generate and from a pattern. A typical example is the 
formation of regular micro-cracks of certain polymer thin films spread on substrates when 
drying [1,2]. The drying causes shrinkage of the film and thus generates stresses. Similar 
phenomenon has also been reported in stressed metal thin film on a silicon substrate [3]. These 
cracks are generally conceived originating from the competition of two effects, i.e. cohesion 
force between molecules and adhesion forces between molecules and substrates. 
 
Crack propagation has been the main focus of fracture mechanics in the engineering world [4]. 
Finite element methods have been developed to compute the process, e.g. [5]. However, the 
traditional linear elastic fracture mechanics does not account for microscopic process of crack 
propagation. In micro scales, vacancies or defects are known to drift toward and accumulate at 
grain boundaries in multi-granular materials or agglomerate into voids in single-granular 
materials, and subsequently form micro cracks. These cracks then evolve in shape and size by 
surface or bulk diffusions in non-rapid fracture cases. Molecular dynamic study [6,7] has 
strengthened this idea. With such consideration, crack pattern formation can therefore be 
considered as a phase transformation process [8,9].  
 
This paper considers the crack patterns in a thin film, which is different from a thick film in 
several aspects. Firstly, for a very thin film with a few monolayers thickness, it cannot be 
treated as a bulk material. Instead, the concepts of surface energy and surface stress are required 
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[10]. Secondly, a crack will have two effects: a) creating the crack surface and b) exposing the 
substrate surface where the crack appears. The effect b can be neglected for a thick film since 
the crack opening is much smaller comparing with the film thickness. However, for a very thin 
film, the exposition of the substrate will cause energy changes comparable to that of the 
creation of crack surfaces. We propose a model in the following. 
 

2 THE MODEL 
We treat the thin film as an infinitely large surface and the substrate as a semi-infinite elastic 
body. The substrate occupies the half space x3 < 0 and is bounded by the x1-x2 plane. The 
energy of the system comprises the surface energy of the film and the elastic energy in the 
substrate. In this paper we assume the substrate is elastically isotropic. The elastic energy per 
unit volume in the bulk is a quadratic function of strain with Young’s modulus E and Possion’s 
ratio ν  as material constants. 
  
The surface energy per unit area, Γ , takes an unusual form in the model. Define a phase field 
parameter, the concentration C, which represents the coverage of substrate surface with film 
molecules. It has values between zero (for crack) and one (for film material). Regard the 
concentration as a spatially-continuous and time-dependent function, ),,( 21 txxC . Generally 
speaking, Γ  is a function of the concentration, C, the concentration gradient, αxC ∂∂ , and the 
strain in the film, αβε  (A Greek subscript runs from 1 to 2). Expanding the function 

( )αβα ε,, xCC ∂∂Γ  in the leading order terms of the concentration gradient αxC ∂∂  and the 
strain αβε , we have 
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where g, h, and f are all functions of the concentration C and coordinates. We have assumed 
that h and f are isotropic in the plane of the surface. The leading-order term in the concentration 
gradient is quadratic because, by symmetry, the term linear in the concentration gradient does 
not affect the surface energy. 

 
The term )(Cg  represents the surface energy per unit area of a uniform film on a substrate. To 
describe phase separation, we may prescribe )(Cg  as any function with double wells. In 
numerical simulations, to be definite, we assume that it takes the form of 

 ( ) ( ) ( )[ ]CCCCCCTkCg b −Ω+−−+Λ= 11ln1ln)( , (2) 
where Λ  is the number of atoms per unit area on the substrate, bk  is Boltzmann’s constant, and 
T is the absolute temperature. The dimensionless number Ω  controls the shape of the curve. 
When 2<Ω  , the function g is convex. When 2>Ω , the function g has double wells, and 
drives phase separation. We assume that 0hh =  is a positive constant. Any nonuniformity in the 
concentration field by itself increases Γ . In the phase field model, the h-term in Eq. (1) 
represents the phase boundary energy. It drives phase coarsening. The quantity, f , known as 
surface stress, is the surface energy change associated with the elastic strain [10]. This 
concentration-dependent surface stress reflects the interaction of the film and the substrate. We 
assume that surface stress is a linear function of the concentration, i.e. Cf φψ +=  , where ψ  
and φ  are material constants [10]. 



 3

Atoms diffuse within the thin film to reduce the combined surface energy and the elastic energy 
in the substrate. The diffusion equation is obtained by energy variation, which is 
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=∇ , and M is the mobility of atoms in the epilayer. The integration extends 

over the substrate surface. The strain field expressed by the double integration term is obtained 
by the superposition of the point force solution. 
 
A comparison of the first two terms in the parentheses of Eq. (3) defines a length 

Tkhb bΛ= 0 . In the Cahn-Hilliard model this length scales the phase boundary thickness. 

The magnitude of 0h  is on the order of energy per atom at a phase boundary. Using magnitudes 

J10~ 19
0

−h , 219 m105~ −×Λ  and J105~ 21−×Tkb  (corresponding to T = 400 K), we have b ~ 
0.6 nm. Another length, ( )[ ]22

0 1 νφ −= Ehl , is defined by comparing the last two terms in the 
parenthesis. This length reflects the competition of surface stress and phase boundary. Young’s 
modulus of a bulk solid is about 211 N/m10~E . A representative value for φ  is N/m4~ [10]. 
The equilibrium phase size is on the order ~ lπ4 , according to theoretical analysis and 
simulation. These magnitudes, together with  J10~ 19

0
−h , give nm8~4 lπ , broadly agrees 

with observed phase sizes in experiments. From Eq. (3), disregarding a dimensionless factor, 
we note that the diffusivity scales as Λ/~ TMkD b . To resolve events occurring over the 

length scale of b, the time scale is Db /2=τ , namely ( )[ ]2
0 TkMh b=τ . 

 
The integral makes it inefficient to solve Eq. (3) in real space. An efficient method is to solve 
the equation in reciprocal space. The Fourier transform converts the integral-differential 
equation into a regular partial differential equation. The integration operation, as well as the 
differentiation over space, is removed and the evolution equation is dramatically simplified. Let 

1k  and 2k  be the coordinates in reciprocal space. Denote the Fourier transform of ),,( 21 txxC  

by ),,(ˆ
21 tkkC , namely, ∫ ∫

∞

∞−

∞

∞−
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2121
2211),,(),,(ˆ dxdxetxxCtkkC xkxki . Normalizing Eq. (3) 

by the length b and the time τ  , and applying the Fourier transform on both sides, we obtain 
the evolution equation in reciprocal space  

 ( )CQkkPk
t
C ˆ2ˆˆ

342 −−=
∂
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where 2
2

2
1 kkk += ,  lbQ =  and ),,(ˆ

21 tkkP  is the Fourier transform of                                
( ) ( ) ( )CCCtxxP 211ln,, 21 −Ω+−= . 

 
Figure 1 shows the emergence of cracks from a void. The calculation cell size is bb 256256 × . 
Material parameters are 2.2=Ω , 3.0=ν , 1=Q . At a given time the concentration fields are 
visualized by gray scale graphs. The brighter region corresponds to higher concentration (film) 
and the darker region corresponds to lower concentration (crack). The calculations start from 
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random initial conditions. The boundary condition conditions are periodic. Figure 1b shows a 
crack pattern from a smaller initial void. The preliminary results have revealed exciting 
features. Additional simulations are being carried out to under the crack pattern formation 
process, crack/void interactions, and effects of material anisotropy. 

 
Figure 1 (a) An evolution sequence of self-assembled crack patterns. (b) A crack pattern from a 
smaller initial void. 
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