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Abstract

A new general constitutive model for describing damage and its effect on the overall properties of transversely

isotropic solids is proposed. The formulation of this macroscopic model is based on a mixed approach combining

tools of representation theory and results from micromechanics. It allows to reduce substantially the number of

the model parameters that have to be determined. The ability of the model to describe the loss of symmetry

resulting from the interaction between initial and damage-induced anisotropy in a brittle matrix composite is

demonstrated.

1. Introduction

The basic mechanisms of deformation of a large class of materials ranging from man-made materials to
geologic materials is microcracking. Since the orientation distribution of the crack arrays depends on the
loading direction, cracks-induced damage is generally anisotropic. Continuum damage mechanics (CDM)
(Krajcinovic [1], Chaboche [2]) as well as micromechanics ([1], Nemat-Nasser and Horii [3], Pensée et
al. [16] etc..) have been successfully applied to the description of damage-induced anisotropy in isotropic
materials. In contrast, few damage models (see for example, Talreja [5], Ladeveze and Letombe [6]; Biegler
and Mehrabadi [7]; Chaboche [20]; Halm et al. [8]) for initially anisotropic materials have been proposed
in the literature, the modelling of the interaction between primary and damage-induced anisotropy re-
maining a debated issue.
In this paper, a new damage model for initially transversely isotropic solids is proposed. The only dissi-
pation mechanism considered is growth of distributed microcracks leading to fracture without significant
inelastic deformation. The adopted methodology consists first to use representation theorems for deriving
an expression of the enthalpy associated to a medium weakened by a set of parallel cracks. This represen-
tation shows the interaction between initial and damage-induced anisotropy (cracks orientation). Then,
using known results from micromechanics, an identification of some parameters of the model is proposed,
the model reduces to the micromechanical one when this model is known. Finally, we adopt an approxi-
mation of damage orientation distribution by a second-order symmetric tensor which allows to generate
a simple CDM model which can be easily analyzed in the frame of Thermodynamics of irreversible pro-
cesses. A damage criterion and the corresponding anisotropic damage evolution law are formulated.
We start with some conventions and notations. Intrinsic summation convention on repeated indices is
adopted. The dyadic product of either vectors or second-order tensors is denoted by “⊗“ whereas “⊗“ is
the symmetrized dyadic product; componentwise (u⊗ v)ij = uivj , for any two vectors u and v and

(A⊗B)ijkl = AijBkl; (A ⊗ B)ijkl =
1

2
(AikBjl +AilBjk) (1)

δ denoting the second order unit tensor, the fourth order symmetric unit tensor is defined by I = δ ⊗ δ
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2. Principle of homogenization of anisotropic materials with parallel penny shaped cracks

2.1. Introduction

The representative elementary volume (r.e.v.) Ω is constituted of an transversely isotropic linear elastic
solid matrix whose stiffness tensor is C0 and of parallel planar microcracks. From a geometrical point
of view, a crack is considered as an oblate spheroid. The classical idealization of a penny-shaped crack
corresponds to an aspect ratio X = c

a
¿ 1 where a is the crack radius and c the half opening. From

a mechanical point of view, a crack can be represented as an inhomogeneity with an stiffness tensor Cc

which depends on its opening/closure status [16]. Classically, the choice of Cc = 0 is made for opened
cracks.

2.2. Transversely isotropic solid matrix weakened by parallel opened cracks

We assume non interaction between cracks; this assumption allows to consider the dilute scheme for
the determination of the homogenized properties of the material. Moreover, uniform stress boundary
conditions are considered on the boundary ∂Ω of the r.e.v.. Following Laws [9], the macroscopic free
enthalpy reads :

W ∗ =
1

2
Σ :

[

S0 + Sd
]

: Σ (2)

with S0 the elastic compliance tensor of the undamaged material (solid matrix). Sd describes the effect
of cracks on the overall compliance tensor; it’s determination requires to evaluate limX→0XQ−1.
Q is related to the more usual Hill’s tensor P (see Mura [10]) by : Q = C0 − C0 : P : C0. The main
difficulty here lies in the anisotropic nature of the solid matrix. Indeed, the analytical determination
of P (or Q) is possible only for cracks in the isotopic plane, i.e. when cracks normal n coincides with
the direction of the material symmetry axis. Since we aim at constructing an analytical damage model,
numerical investigations of P tensor is not reported here.
Let us introduce now the structural tensor A = (m ⊗ m), m representing the vector parallel to the

symmetry axis. Considering the classical cracks density parameter ρ(m) = Na3 (N being the number of
cracks by unit volume), the macroscopic free enthalpy reads in this case :

W ∗(Σ, A) =
1

2
Σ : S0 : Σ +

ρ(m)

2

{ 1

k1

[(A : Σ)+]2 +
1

k2

[(Σ.Σ) : A− Σ : (A⊗A) : Σ]
}

. (3)

k1 and k2 depend only on the elastic coefficients of the transversely isotropic material :
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(4)

The term (A : Σ)+ denotes the positive part of (A : Σ). Since the presence of this term in (3) cancels
for closed cracks, it accounts for unilateral effects. Expression (3) extends then the results given in [9] to
closed cracks. For simplicity, only opened cracks are considered in what follows, analysis of cracks closure
being performed out elsewhere.



3. Representation theorems applied for initially transversely isotropic materials

3.1. Macroscopic energy for transversely isotropic materials with parallel cracks

We recall that in the undamaged state, the material is transversely isotropic, its symmetry group G

being the group of rotations about a preferred direction, say, the unit vector m:

G = {Q ∈ O(3) | Q .m = m or Q .m = −m }. (5)

or equivalently G = {Q ∈ O(3) | Q .A .QT = A }, with A = m⊗m.

We emphasize that the tensor A characterizes the symmetry of the material in the undeformed state.
Liu [12] proved that any scalar, vector, or second-order tensor valued anisotropic function of vectors
and second order tensors, can be expressible as an isotropic function of the original arguments, and of
structural tensors as additional arguments . Thus, any scalar function, say, the elastic energy W ∗ can be
represented relative to G by an isotropic function of Σ, the cracks orientation n, and the tensor A.
For a transversely isotropic material weakened by a set of parallel cracks of normal n, the representation
theory (see for instance also Boehler [13]) indicates that the macroscopic free enthalpy is a polynomial
isotropic scalar function of the symmetric tensors (Σ, A, n⊗ n). The presence of n⊗ n accounts for the
fact that the energy must be objective, radially symmetric with respect to n (see Welemane and Cormery
[17]). W ∗ takes then the form given in Appendix.

Figure 1. The solid matrix with a slit crack

3.2. Identification based on micromechanics results

Observing that representation (20) contains too many parameters we aim now at identifying some
coefficients of the model by using known results from micromechanics. We consider first the cracks con-
figuration studied in subsection 2.2. In this case tensor N = n ⊗ n coincides with the structural tensor
A = m ⊗ m and the general representation given in appendix must reduce to the micromechanics one
(3). This procedure leads to following relations:











b2 = 0; b14 = −(b4 + b11); b19 =
1

4k2

−
1

4k1

− (b5 + b10 + b15 + b17 + b18)

b7 = 0; b16 =
1

4k1

− (b8 + b9)
(6)

A second identification is done by constraining the general representation to coincide also with the dilute
scheme estimation when the solid matrix is isotropic (see [1], [4]). It follows that :

b9 = 0; b11 = b5 + b15 = −b10 (7)



To summarize, the identification procedure proposed here allows to reduce the model parameters to the
5 elastic constant of the solid matrix and 6 remaining parameters which have to be determined from
standard experiments.

4. Generalization for a randomly distributed cracks system

4.1. Principle

In this section we extend the previous results to randomly oriented cracks. The generalized macroscopic
free enthalpy can be formulated as the integral of the free enthalpyW ∗(Σ, A, n⊗n) associated to all cracks
families and performed over all orientations (over the unit sphere S):

ψ∗ =
1

2
Σ : S0 : Σ +

1

4π

∫

S2+

W ∗(Σ, A, n⊗ n)dS (8)

Such procedure is somewhat similar to techniques classically used for microplane models [18]. However,
it is worth noticing that W ∗(Σ, A, n ⊗ n) is constructed by combining representation theorems and mi-
cromechanics arguments. Following Lubarda and Krajcinovic [11], we choose to approximate the crack
density distribution ρ by a second-order tensor d, such as ρ(n) = d : (n⊗n). It is possible to introduce at

the place of d a macroscopic tensor D defined by : D = 1

4π

∫

S2 ρ(n)(n⊗ n)dS. This replacement gives :

ρ(n) =
3

2
[5D : (n⊗ n)− tr(D)]. (9)

Therefore, in this new representation of microcracking, the damage is characterized by an internal variable,
denoted D, which is related to the distribution (density, orientation) of defects. Taking into account (9),
the integration (8) on the unit sphere can now be performed analytically using the following identities :

1

4π

∫

|n|=1

n⊗ndS =
1

3
δ ;

1

4π

∫

|n|=1

n⊗n⊗n⊗ndS =
1

3
J+

2

15
K ; J =

1

3
δ⊗ δ ; K = I−J (10)

1

4π

∫

ninjnknlnαnβ dϕ =
1

7
Aijklαβ (11)

with Aijklαβ = 1

5
(δijAklαβ + δikAjlαβ + δilAjkαβ + δiαAjklβ + δiβAjklα)

The free enthalpy of the damaged medium takes the form :

ψ∗ =
1

2
Σ : Shom : Σ, (12)

where the overall compliance tensor Shom takes the form :

Shom =















c1(δ ⊗ δ) + c2(δ ⊗ δ) + c3(D ⊗ δ + δ ⊗D) + c4(D ⊗ δ + δ⊗D)+

c5(δ ⊗A+A⊗ δ) + c6(δ⊗A+A ⊗ δ) + c7(A⊗A) + c8(A⊗D +D ⊗A)+

c9
[

δ ⊗ (A ·D +D ·A) + (A ·D +D ·A)⊗ δ
]

+

c10
[

A⊗ (A ·D +D ·A) + (A ·D +D ·A)⊗A
]

+ c11
[

δ⊗(A ·D +D ·A) + (A ·D +D ·A)⊗δ
]















(13)

with ci:

c1 = g1 + g2 tr(D) + g3 tr(A.D), c2 = g4 + g5 tr(D) + g6 tr(A.D), c3 = g7,

c4 = g8, c5 = g9 + g10 tr(D) + g11 tr(A.D), c6 = g12 + g13 tr(D),

c7 = g14 + g15 tr(D) + g16 tr(A.D), c8 = g17, c9 = g18, c10 = g19, c11 = g20.

(14)



Again, it is worth noticing that coefficients gi in (14) depend only on the 5 elastic coefficients of the solid
matrix and the remaining 6 parameters.

4.2. Damage evolution law

Given the expression of the energy ψ∗, the thermodynamic force Y , associated to damage is obtained

by partial derivation : Y = ∂ψ∗

∂D
. The damage surface is expressed in terms of Y , (also called the damage

energy-release rate), and D as:

f(Y ,D) = ‖Y ‖ − [h0 + h1trD + h2tr(DA)]. (15)

In (15) h0, h1, and h2 are model parameters: h0 defines the initial damage threshold while h1 and h2

describe the manner in which the surface evolves with damage. In particular, h2tr(DA) accounts for the
interaction between initial and damage-induced anisotropy. The evolution of D is assumed to follow the
normality rule:

Ḋ =











0, if f < 0 or f = 0 and ḟ < 0

λ̇
∂f

∂Y
, if f = 0 and ḟ = 0

(16)

The positive scalar λ̇ (damage multiplier) is given by the classical Kuhn-Tucker condition ḟ = 0, i.e.:

λ̇ =
tr(Y · Ẏ )

k1tr(Y ) + k2tr(Y .A)
(17)

5. Conclusions

A general model for describing damage in initially transversely isotropic solids is proposed in the frame-
work of irreversible thermodynamics. Assuming a moderate density of defects, a linear dependence of the
elastic energy on cracks density parameter was considered. Representation theorems were used to obtain a
general form of the enthalpy of a solid matrix containing a set of parallel cracks. By using an identification
procedure based on results provided by micromechanics, it is shown that the number of model parameters
is substantially reduced. Next, a second-order symmetric tensor defined as an approximation of cracks
density distribution is introduced for the continuum damage model. A damage criterion and anisotropic
damage evolution law were also formulated. The model is now applied to the description of the tensile
behavior of a ceramic matrix composite. A procedure for identification of the model parameters based
on the experimental variation of the stiffness components with the applied load will be presented. First
comparison with data obtained by Baste and Aristegui [14] show the ability of the model to describe the
loss of elastic symmetry due to anisotropic damage as well as damage effect on the overall stress-strain
response (see [19]). Study of cracks closure process is also under progress.
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Appendix : Free enthalpy of a transverse isotropic materials weakened by parallel cracks

W ∗(Σ, A, n⊗ n) =W ∗
0 + ρ(n)W ∗

d with (18)

W ∗
0 = b1 tr

2(Σ) + b3 tr(Σ.A) tr(Σ) + b6 tr(Σ
2) + b12 tr

2(Σ.A) + b13 tr(Σ
2.A) (19)

W ∗
d =























b2 tr(A.N) tr2(Σ) + b4 tr(Σ.N) tr(Σ) + b5 tr(Σ.A) tr(Σ.N) + b7 tr(A.N) tr(Σ2) + b8 tr(Σ
2.N)+

b9 tr(A.N) tr(Σ2.A) + b10 tr(A.N) tr2(Σ.A) + b11 tr(A.N) tr(Σ.A) tr(Σ) + b14 tr(Σ) tr(Σ.A.N)+

b15 tr(Σ.A) tr(Σ.A.N) + b16 tr(Σ
2.A.N) + b17 tr

2(Σ.N) + b18 tr(Σ.N) tr(Σ.A.N) + b19 tr
2(Σ.A.N)























(20)

in which n denotes the unit normal to the crack plane and N = n⊗n. Note that, the linear dependence of
the elastic energy on cracks density is justified by the consideration of moderate cracks density parameter.
Note also that, since they do not bring any other modification of the material symmetry, some extra terms
implying tr(A.N) are not considered here.


