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ABSTRACT 

A material element with distributed microcracks of arbitrary orientations is considered under tensile 
and compressive stress regimes. The frictional slip with accompanying dilatancy at rough crack inter-
faces is assumed and crack growth criterion is derived. The variation of material compliance is ana-
lyzed and the non-linear response is determined for proportional loading and unloading. 

 
1. INTRODUCTION 

The present paper is aimed at extension of previous studies by considering the contact di-
latancy effect. The cracked material element is considered with cracks distributed along 
specific orientations, (see Figure 1), or arbitrarily distributed. The coupled inelastic phe-
nomena such as crack growth and frictional slip combined with dilatancy affect the material 
compliance which differs essentially in compressive and tensile stress regimes due to uni-
lateral contact at cracked surfaces. The crack growth within initial plane orientation is as-
sumed and the crack interaction is neglected in the analysis. 

 
2. MODEL FORMULATION 

Assume the small strain theory and decompose the strain tensor into elastic and damage 
components: ε = εe + εd. Assume the Hooke’s law for the elastic component εe = Cσ, where 
C denotes the elastic compliance tensor and σ is the stress tensor. Consider a representative 
volume element with mV microcracks. For a continuous distribution of microcracks damage 
strain tensor can be presented in the form 
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where Ω  is a semi-plane of the unit radius. The mean damage strain components in the 
physical plane , d

nε d
nγ  can be expressed as follows 
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where αn = an/a0 denotes the ratio actual and initial crack size, pn and fn are the contact 
tractions in normal and tangential directions, cn, ct are the normal and tangential compliance 
moduli, thus 
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and gn(ν) and gt(ν) are the functions of the Poisson ratio. The stress components acting on a 
crack plane are expressed by assuming that there is no crack in the physical plane, thus 
 ,               τ . (4) nσ = ⋅ ⋅n σ n σ( )n = − ⊗ ⋅ ⋅I n n n



 
 

 
Figure 1: A material element with 
microcracks: a set of oriented cracks. 

Figure 2: Friction slip and contact forces at inclined 
crack interface: interaction of wedge asperities. 

 
 

     Assume that the crack growth in a physical plane is not affected by cracks in other planes. For 
simplicity, consider circular crack growth depending on one parameter, namely the crack diameter 
an. Applying the Griffith energy criterion of crack growth, we state that 
 , (5) ( )d 0n nG RΦ α= − =

where R = R(αn) is the crack growth resistance function and Gn denotes the potential energy re-
lease due to crack presence: 
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Thus, we have 
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     Consider a circular microcrack in contact on rough surfaces (see Figure 2). Assume the wedge 
asperities to be inclined at the angle ϕ to the nominal contact surface Γ0. The actual rough contact 
surface is denoted by  and the friction coefficient on this surface is denoted by µ = arctanψ, 
where ψ  is the friction angle. The quantities referred to the actual inclined interface will be 
marked by “ ^ ”, thus  and , and ,  denote stress and strain compo-

nents acting on the asperity surface inclined at the angle ϕ. The quantities referred to the nominal 
plane are denoted by p

0Γ̂

ˆnp ( )1 2
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n, fn and . We can distinguish the opening mode Om with no tractions 
transferred, the slip mode Sm with accompanying friction and dilatancy, finally the closure mode 
Cm with no slip (e.g. Mróz and Seweryn [3]). 
     The opening mode Om occurs when 

 d d tan and 0,n n n npε ϕ> =γ f = 0 . (8) 

The closure mode Cm corresponds to the interaction of a closed crack with no slip. For the Cou-
lomb friction condition, we can write 

 ˆ ˆ tann np ψ< −f   and  . (9) d d,   ,    0,    0,   0n n n n n n np Gσ ε= = = =f τ γ =

The closed microcracks with no slip do not affect the material compliance or stress distribution. 



The contact slip mode Cm occurs when 
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and the limit friction condition must be satisfied on the inclined contact surface, thus 

 ˆ ˆ tann np ψ= −f . (11) 

     When the inequality (8) is satisfied, the deformation process occurs with open crack mode. The 
crack growth condition (5) now takes the form 
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and in the incremental form 
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We can thus write (when Φd = 0) 
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The solution of crack growth eqns (13), (14) is shown in Table 1. 
     In order to analyse the slip on a rough inclined crack surface, let us introduce two coordinate 
systems. The system 0xyz referred to the nominal contact surface Γ0 and the system ˆˆˆ0xyz  referred 

to the actual surface  inclined at the angle ϕ  to Γ0Γ̂
y

0 (see Figure 2). These two systems have the 
common axis , and the axis ˆy = x̂  is inclined at the dilatancy angle ϕ  to the x-axis. It is as-
sumed that slip direction coincides with the x̂ -axis and the shear strain vector coincides with the 
x-axis, thus: , d d
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The identical relations occur between the contact tractions, the stress components and the strain 
increments. The vector  is coaxial with dˆ

nf dˆ nγ  and during contact slip we have 

 d d dˆ 0, tann n nε ε ϕ= = γ . (16) 

 
Table 1: Solution of the incremental crack growth equations. 

 Dn < 0 Dn = 0   Dn > 0   
Sn < 0 dαn = 0 dαn = 0 dαn = 0 or  2 1d 3n n n nc S Dα α −= − n
Sn = 0 dαn = 0 dαn ≥ 0 dαn = 0 

Sn > 0 2 1d 3n n n nc S Dα α −= − n  No solution No solution 
 



The limit friction condition is 
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     The slip occurs when . We have in the plane  s s
ˆ ˆdΦ Φ= = 0Γ̂
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The crack growth condition (19) is expressed in terms of dˆ nγ  as follows 
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and the increment equals 
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The following cases can now be considered: 
i) ; there is no slip and crack growth ( d d ), d s

ˆ0, 0Φ Φ< < 0

< 0
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=
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ii) ; there is no slip, so there is no crack growth ( d d ), d s
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iii) ; the slip may occur ( d ), but there is no crack growth ( ), d s
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iv) ; the slip and crack growth may occur simultaneously ( d 0 , ). d s
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The increments , dαˆd nλ n satisfy the following complementary conditions 
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Table 2: Solution types of the set (24). 

detAn > 0 
 ˆ 0nt <  ˆ 0nt =  ˆ 0nt >  
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dˆˆ 0n n⋅ =v γ , thus  ( )
21 0nA = (25a) (25a) (25b) 

dˆˆ 0n n⋅ >v γ , thus  ( )
21 0nA < (25a) (25a) (25c) 
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dˆˆ 0n n⋅ >v γ , thus  ( )
21 0nA < (25a) (25a),(25d) No solution 

detAn < 0 
dˆˆ 0n n⋅ <v γ , thus  ( )

21 0nA > (25a) (25a) (25b) 

dˆˆ 0n n⋅ =v γ , thus  ( )
21 0nA = (25a) (25a) (25b) 

dˆˆ 0n n⋅ >v γ , thus  ( )
21 0nA < (25a),(25c) (25a) No solution 
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3. MODELLING  STRESS-STRAIN  RESPONSE 

Following Gambarotta and Logomarsino [2], we assume 

 ( ) ( )11 m
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where κ and m are the material parameters. For the case of tension normal to the crack plane we have 
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Thus, the parameters κ and m can be specified once the critical crack size αc and the critical  stress 
σc have been determined experimentally. 
     Figure 3ab presents the stress-strain curves for an element with oriented set of cracks. Figure 4a 
present the dependence of crack size on its orientation. It was shown already that the critical ori-
entation angle  δc = π/4 + (ϕ + ψ)/2 corresponds to the largest microcrack growth and the orienta-
tion of the failure plane is specified by δc. Figure 4b presents the stress-strain diagrams for ele-
ments with uniformly distributed microcracks in uniaxial compression generated by the model 
equations. 
 
 
  



 a) b) 

                     
Figure 3: The stress-strain curves in uniaxial tension (a) and compression (b) for an ele-
ment with oriented cracks. 
 

 a)     b) 

                    
Figure 4: a) Crack size variation, b) loading-unloading stress-strain diagrams for uniaxial 
compression of uniformly cracked elements. 

 
 

4. CONCLUDING REMARKS 
The present analysis of microcracked materials extends previous studies by Andrieux et al. [1] and 
Gambarotta and Logomarsino [2] by accounting for dilatancy effect at crack interfaces. Both uni-
lateral contact condition, friction slip and crack growth are included in the analysis. The isotropic 
and anisotropic microcrack distribution is considered. The crack branching effects leading to wing 
cracks are neglected by assuming crack growth in the same physical plane. 
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