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ABSTRACT

This contribution presents a multi-scale framework for the representation of the non-linear behaviour of planar
masonry structures based on computational homogenization techniques. In order to avoid the troublesome for-
mulation of closed-form constitutive equations, the first-order multi-level finite element scheme is enhanced to
capture the non-linear macroscopic behaviour of brick masonry in the presence of quasi-brittle damage. This
multi-scale technique relies on the formulation of mesoscopic constitutive laws for the individual brick and
mortar materials. A periodic unit cell with specific periodicity requirements is used to deduce the average re-
sponse of the masonry material. The scale transitions formulated to extract the average response of the material
make use of the initial periodicity of the material structure. At the macroscopic scale, the deduced material
response is used in the frame of a standard continuum approach. An enhanced first-order computational multi-
scale solution scheme is outlined, allowing to include mesostructurally based damage localization in structural
computations. The model enhances the first-order computational homogenization technique by introducing fi-
nite width damage localization bands, each corresponding to a pair of weak discontinuities. The size of this
localization band is directly deduced from the initial periodicity of the material. As a result of the use of ho-
mogenization techniques on finite volumes and of the presence of quasi-brittle constituents, a mesostructural
snap-back may occur in the homogenized material response deduced by the scale transition. A methodology
to introduce this type of response in the originally strain driven multi-scale technique is proposed. Its impact
on the implementation of the framework is detailed. The results obtained by the framework are illustrated by
means of a structural computation example.

1 INTRODUCTION

Ensuring the safety of historical buildings requires careful analysis of the residual strength of the
(possibly damaged) structures and of the effect of repair operations. Finite element modelling of
the failure process may be extremely useful in such analyses. Conventional finite element analy-
ses require a constitutive model of the building material. For masonry, however, the formulation of
closed-form constitutive relations which can accurately describe the aggregate degradation behaviour
of bricks and mortar joints is a formidable challenge. Not only may both individual constituents and
their bonding be degraded, these degradation processes also strongly influence each other, resulting
in a range of possible failure mechanisms [1]. These failure modes and the mechanical responses
associated with them are dominated by the mesostructure of the material, i.e. by the geometric ar-
rangement of the bricks and mortar and by their individual properties. Most notably, cracks often
follow the mortar joints and thus follow preferential directions which are set by the mesostructure.
This results in the possible appearance of complex damage-induced anisotropy effects.



2 MULTI-SCALE MODELLING OF MASONRY

2.1 Multi-scale modelling of heterogeneous materials

Realistic predictions of strength and failure modes of masonry may be obtained from mesoscopic
modelling, in which the geometry of the bricks and mortar joints is explicitly modelled, and homoge-
neous material behaviour is assumed for each of the phases [2]. Even if relatively simple constitutive
relations are used for the brick and for the mortar materials, such models show a complex overall
behaviour which agrees well with experimental observations. Modelling the full mesostructure of
entire walls or structures, however, may quickly become too expensive.

A compromise between computational cost and mesostructural detail can be reached by using an
approach in which the mesoscopic and macroscopic scales are coupled. Structures are then modelled
using an homogenised continuum description, the constitutive behaviour of which is determined at
runtime by mesoscopic computations. In a finite element context, a sample of the mesostructure
is used to determine the material response in each Gauss point of the macroscopic finite element
discretisation. The local macroscopic strain is applied in an average sense to the mesostructure and
the resulting mesostructural stresses are determined by a finite element analysis. The averaging of
these mesostructural stresses and the condensation of the mesostructural tangent stiffness to the ho-
mogenised tangent stiffness then yield the macroscopic material response associated with the Gauss
point. This concept based on computational homogenisation has been used before to model hetero-
geneous polymers, see e.g. [3]. Its added value in the context of masonry resides in the fact that
no complex closed form constitutive relation needs to be postulated for the representation of the
overall material behaviour. The complexity associated with the damaging mesostructure of the ma-
terial is naturally accounted for by scale transitions. Also, material identification issues are shifted
to the level of mortar joints and brick constituents. It is emphasized that this multi-scale framework
makes use of a strain-based scale transition. It thus heavily relies on the availability of a solution of
the mesostructural boundary value problem for the macroscopic strain increment prescribed by the
macroscopic computation.

The definition of a multiscale scheme for masonry thus essentially requires the definition of
four ingredients: (i) a mesoscopic constitutive setting for the brick and mortar materials, (ii) the
definition of a representative mesostructural sample, (iii) the choice of a macroscopic continuum
representation, and (iv) the set-up of scale transitions linking macroscopic and mesoscopic quantities.
These features should carefully be selected in order to allow a proper incorporation of the localisation
behaviour, both at the mesoscopic and macroscopic scales.

2.2 Mesoscopic modelling and unit cell definition

Masonry constituents are quasi-brittle materials exhibiting low fracture energies and high sensitivi-
ties to tensile stresses. A scalar implicit gradient damage framework is therefore used at the meso-
scopic scale, involving the solution of a non-local averaging equation in addition to the mesoscopic
equilibrium [4].

Based on the periodicity of the initial mesostructure of masonry, periodic homogenisation con-
cepts are used in order to build scale transitions between the mesoscopic and macroscopic scales. In
this contribution, the smallest periodic mesostructural sample is selected as the representative vol-
ume element in order to limit the computational effort at the mesoscopic scale. For running bond
masonry, the smallest possible unit cell is represented in Figure 1.



Figure 1: Identification of a mesostructural unit cell (left), and of a macroscopic localisation band
(center and right)

2.3 Localisation enhanced scheme

In order to deal with localisation at the macroscopic scale, embedded localisation bands surrounded
by unloading material are introduced in a standard first order continuum description. A material
bifurcation analysis based on the homogenised acoustic tensor eigenspectrum analysis as proposed
in [6] allows to detect the appearance of localisation along orientations which are consistent with the
unit cell mesostructural damage patterns. The band width is deduced from this orientation and the
initial periodicity of the mesostructure, as illustrated in Figure 1 for a staircase crack pattern. Due
to the presence of the band width, the resulting overall energy dissipation becomes sensitive to the
ratio between mesostructural and structural sizes.

Figure 2: Enhanced first-order multi-scale scheme with embedded strain discontinuity for localised
behaviour.

Upon detection of localisation in a given material point, a band is inserted and the multi-scale
scheme depicted in Figure 2 is initiated. The averaged response of the system composed of the
localisation band with its surrounding material is obtained using a relaxed Taylor assumption [5].
The finite volume associated to the macroscopic material point is split into a localising band (b), and
its surrounding volume (s). A strain jump between the sub-regions is defined by the normal to the
band �� and a strain jump mode ��. For a given macroscopic strain �, this embedded band model
assumes a constant strain in each sub-region, determined according to
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where � � and � � are the respective volume fractions. The stress variations in the sub-regions are
deduced from unit cell computations, and the macroscopic stress� is obtained by volume averaging
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The strain jump between the band and its surrounding volume is obtained from the traction continuity
requirement at the interface between both sub-regions
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3 SCALE TRANSITION ISSUES

Mesoscopic damage localisation in weaker zones of the order of a narrow mortar joint may lead to
snap-backs in the retrieved homogenised material response used at the macroscopic scale. Note that
snap-back effects result from the averaging operations performed on a finite material volume. In
the enhanced multi-scale scheme sketched in Figure 2, it may thus appear at the level of the relaxed
Taylor averaging or at the level of the localising unit cell. The original strain-driven scale transition
is unable to treat such a mesostructural response.

A snap-back stemming from the relaxed Taylor assumption is treated here by searching for pos-
itive increments of the strain jump between the localising and the surrounding material. This is
achieved by considering this strain jump as a macroscopic unknown, which allows a control by
means of path following techniques. The traction continuity requirement (3) is used as an additional
equation in the macroscopic solution procedure.

A snap-back effect in the localising unit cell averaging step is more difficult to control. The
presence of a snap-back in the unit cell response implies that a solution does not necessarily exist for
any prescribed macroscopic strain increment. Since the unit cell equilibrium problem is strain-driven
in the original multi-scale scheme, an adaptation of the framework is introduced to handle such snap-
backs. This enhancement consists in steering the unit cell computation on the snap-back path. This
is achieved where needed by forcing further mesoscopic energy dissipation through the increase of
selected mesoscopic non-local strain unknowns. Similarly to path following techniques, the unit cell
boundary value problem is then controlled by the prescription of the macroscopic averaged strain
complemented by a non-local strain increment acting as a control variable. In the same spirit as
for the relaxed Taylor model snap-back, the selected non-local strain unknowns are included in the
macroscopic solution procedure. The prescription of the non-local strain as an additional boundary
condition on the unit cell problem leads to the appearance of a conjugate residual �� . This residual
has to vanish in order to obtain an equilibrium configuration of the unit cell, and this equation may
be used as an additional equation in the macroscopic solution procedure.

These snap-back enhancements are summarised in Figure 3. The equations solved in each solu-
tion procedure are mentioned at the related scale. The macroscopic equilibrium, the traction continu-
ity for localising bands and the non-local residual equations are solved in the macroscopic solution
procedure (full box), while the mesoscopic equilibrium and the non-local averaging equations are
solved at the mesoscopic solution procedure (dashed box). Details on the selection of the control-
ling mesoscopic non-local strain, on the extraction of the homogenised tangent stiffness and of the
non-local residual are available in [7].



Figure 3: Enhanced multi-scale scheme with snap-back enhancements.

4 APPLICATION

The proposed multilevel scheme was implemented using parallel computing facilities. The capacities
of the proposed approach are shown by means of a structural computation. A typical structural
application consists in a confined sheared wall with an opening as illustrated in Figure 4. The wall is
first vertically compressed. In a second phase, a shear load is applied in a confined way, i.e. keeping
the vertical position of the top boundary fixed at its value at the end of the first phase. The totality
of bricks consistent with the mesoscopic and structural dimensions is drawn in Figure 4 in order to
emphasize the costly character of a complete fine scale modeling of this structure, and the benefit of
a multi-scale scheme. The damage localisation bands before the final collapse are given in Figure
5 together with the associated mesoscopic damage patterns in unit cells. This figure clearly shows
damage localisation from corners of the opening towards the top-right and bottom-left corners of
the wall, accompanied with failure of bed joints at the external face of the wall. This overall crack
pattern with staircase cracks was also experimentally observed for smaller walls of similar shape.

5 CONCLUSIONS

The multi-scale methodology proves to be a valuable tool for the investigation of masonry structures.
In particular, it allows to account for the strong coupling between the structural response and the
underlying mesostructural features of the material. Specific enhancements are however needed in
order to account properly for the consequences of the quasi-brittle nature of the constituents. Snap-
back responses are treated in this contribution by means of an enhanced scale transition which makes
use of mesostructural quantities as controlling variables.



Figure 4: Application: Confined shearing of a masonry wall with opening.
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Figure 5: Application of the multi-scale method to a masonry wall segment with opening.
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