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ABSTRACT 

Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, 
aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam 
(SEPB) and single edge v-notched beam (SEVNB) methods.  Relatively good agreement in fracture toughness 
between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in 
fracture toughness was seen for materials with rising R-curves.  The discrepancy in fracture toughness between 
the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks 
even in SEVNB test specimens.  The effect of discrepancy in fracture toughness was analyzed in terms of 
microstructural feature (grain size and shape), toughening exponent, and stable crack growth determined using 
back-face strain gaging.       
 
 

1.  INTRODUCTION 
      There are several methods to determine fracture toughness of brittle materials such as glasses, 
glass ceramics, and advanced monolithic ceramics.  These includes indentation techniques such as 
indentation fracture (IF) [1], indentation strength (IS) [2], surface crack in flexure (SCF) [3], 
chevron notch technique [3], single edge precracked beam (SEPB) technique [3], and single edge v-
notched beam (SEVNB) technique [4] technique.  Both indentation fracture (IF) and indentation 
strength (IS) methods are based on the empirical calibration constants to determine fracture 
toughness; hence, they are less rigorous theoretically from a perspective of fracture mechanics than 
the other methods.   
      The SEVNB technique [4] has been introduced recently, in which a final sharp v-notch with its 
radius ranging from 10 to 20 µm was introduced by polishing a pre-notched section with razor blade 
in conjunction with diamond paste.  This technique has shown to be in good agreement with other 
techniques.  A previous round robin on fracture toughness [4] was dedicated to use the SEVNB 
method to determine fracture toughness of five different ceramic materials.  It was shown that 
certain ceramics exhibited significant difference in fracture toughness between the SEVNB and 
SEPB methods: the SEVNB estimated lower fracture toughness than the SEPB.  The plausible 
reason for this discrepancy was presumed to be attributed to R-curve behavior of the materials. 
      This study, as motivated from the previous round robin, determined fracture toughness of a total 
of 13 advanced ceramics using both SEVNB and SEPB methods.  The difference in fracture 
toughness between the two methods was carefully analyzed based on R-curve estimations and back-
face strain measurements.  The effect of major microstructural feature - grain size and its shape - 
was also discussed. 
 

2.  EXPERIMENTAL TECHNIQUES 
      Flexure test specimens typically measuring b=3.0 mm, W=4.0mm, and L (length)=25 or 50 mm, 
were used in fracture toughness testing at room temperature in air.  In the SEVNB method, a razor 
blade with diamond paste with grain size of 1 µm was  used  to  introduce a final sharp  notch with a 
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Figure 2.  Fracture toughness determined by SEVNB and SEPB methods for various ceramics.  
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Figure 3.  KIc ratio (=SEVNB/SEPB) with respect to range of grain sizes for various ceramics. 

 
 
thereby generating crack closure stresses in the wake region of a crack.  It has been also observed by 
the authors for a long time that these coarse and elongated grained ceramics reveled rising R-curve 
behavior with its degree depending on material [8].  Typical examples of R-curves of some 
materials evaluated by the indentation technique [7], are shown in Figure 4.  Note that fine-grained 
NC132 silicon nitride (grain size <1 µm) and soda-lime glass showed flat R-curve behavior; 
whereas, coarse-grained AD998 alumina (grain size >10 µm) and elongated grained NKK and 
AS800 silicon nitrides (elongated grain size >20 µm) exhibited significant rising R-curves.  The 
degree and size of grain elongation were greater in NKK than in AS800.   The R-curve in Figure 4 
was formulated using the following expression [7] 
 

KR = k[a]m                                                                     (1)                          
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Figure 4. Crack growth resistance curves of some brittle materials, determined by indent 
techniques. 
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Figure  5.  KIc ratio as a function of toughening exponent (m) for various ceramics. 
 
 
where KR is crack growth resistance, a is crack size (crack extension), k is a parameter, and m is 
toughening exponent.  With the estimated m parameter for each test material, KIc ratio was plotted 
as a function of m, as shown in Figure 5.  A clear trend can be seen from the figure such that KIc  
ratio remained close to unity for lower m values (m<0.02) but decreased appreciably (or dropped) at 
higher m values (m=0.1-0.14) with a following approximation 
 

KIc/SEVNB /KIc/SEPB  ≈ -1.9 m + 1                                                   (2) 
 
This, although not based on theoretical consideration, implies that the toughening exponent m could 
be an important parameter to quantify the degree of discrepancy in fracture toughness between the 
SEVNB and SEPB methods.   
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Figure 6.  Typical examples of applied load-vs.-strain curves, determined by back-face strain 
gaging.  
 
 
       Typical load vs. back-face strain curves of SEVNB test specimens of several ceramics are 
shown in Figure 6 (Note that back-face strain was in compression but was expressed in tension for  
simplicity).  Both fine-grained ceramics such as N3208 silicon nitride and AD998 alumina showed 
linearity in their load-vs.-strain curves.  However, the coarse-grained AD998 alumina and the 
elongated-grained AS800 silicon nitride exhibited nonlinearity at the region close to the final 
fracture, resulting in stable crack growth prior to instability.  This stable crack growth was 
determined analytically in conjunction with the results of Figure 6.  The analytical solution was 
expressed as follows: 
 

),,,,(][1 2/1 EWbLLf
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ioε
α −=                                                    (3) 

 
where α=a/W with a and W being crack size and specimen depth, P is applied load, ε is backside 
strain, and the function f depends on fixture spans, and width and elastic modulus of test specimen.  
The crack growth resistance KR, corresponding to crack size (α) and applied load in the stable 
crack-growth region, was determined and the results are shown in Figure 7.  
      For N3208 and AD999 materials, no or negligible stable crack growth occurred.  By contrast, 
AS800 material exhibited a significant stable crack growth, resulting in a considerable increase in 
fracture toughness by about 35 %.  Also, AD998 material resulted in fracture-toughness increase by 
about 25 %.  It is interesting to note from the figure that fracture toughness started from the values 
determined by the SEVNB method and ended up with the values determined by the SEPB method.  
This indicates that the discrepancy in fracture toughness between the two methods, particularly for 
coarse and elongated grained ceramics, is due to the fact that the calculation of KIc in SEVNB 
specimens did not consider the stable crack growth in their final crack sizes, which is not 
discernable from fracture surfaces in many cases.  Although this extension by sable crack growth is 
small in the order of a few hundred micrometers and the measurement imposes a great difficulty, the 
effect on fracture toughness is still significant.  Stable crack growth occurring via grain bridging and 
pullouts together with crack closure stresses acting in the wake region is the most plausible, physical 
explanation for the discrepancy in fracture toughness between the two methods.   
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Figure 7.  Crack growth resistance curves determined by back-face strain gaging based on the 
results in Figure 6.  
       
 

4.  CONCLUSIONS 
      The discrepancy in fracture toughness between the SEVNB and SEPB methods was due to R-
curve behavior of ceramic materials, in which stable crack growth through grain pullouts and 
bridging takes place, imposing crack closure forces in the wake region of a propagating crack even 
for SEVNB specimens. The discrepancy increased for materials with stronger rising R-curve and 
was quantified with a toughening exponent (m).  It is recommended that both SEVNB and SEPB 
methods be used together to evaluate fracture toughness of any materials unknown in 
microstructural features and R-curve behavior.  Any elaborate method to monitor stable crack 
growth in SEVNB specimens is also recommended. 
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