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ABSTRACT

This paper is concerned with the problem of a radial penny-shaped fracture transverse to
a borehole with finite radius. It focuses on compressibility and borehole finite radius effects as
possible candidates to explain the early unstable phase of the fracture growth observed during
laboratory experiments conducted with low viscosity fluids. We assume that the fracture is driven
in an impermeable elastic material by a compressible, inviscid fluid, for which the pressure gradient
along the fracture is zero. A solution is proposed in terms of dimensionless fluid pressure, fracture
radius and inlet opening. It is shown that the problem depends on one single evolution parameter
S describing the transition of the solution between two asymptotic regimes in which the solution
becomes self-similar. Compressibility effects control the solution at small S while the solution at
large S is dominated by the material toughness. A built-in instability is identified in the system
of equations describing the problem and a criterion is proposed to predict the occurrence of an
unstable growth step after fracture breakdown. The possibility of an unstable growth depends on
the initial flaw length, the fluid compressibility, the volume of fluid and the material elastic modulus.
The finite borehole radius introduces one additional length scale to the formulation of the similar
problem in an infinite medium.

1 INTRODUCTION
When conducting experiments designed to reproduce the process of hydraulic fracturing
under laboratory conditions, it is generally desired for the fracture to grow in a controlled
manner in a block without interacting with its outer boundary. Data sampling also de-
mands for the fracture to propagate slowly enough for the acquisition system to collect
relevant information. However, experiments conducted with low viscosity fluids systemati-
cally exhibited an unstable crack growth step just after breakdown that was characterized
by a very fast increase of the fracture radius and a sharp pressure decline (Jeffrey [4]). Nu-
merical models available to describe the propagation of a fluid-driven crack relies on the
assumptions that the fluid is incompressible and that the borehole can be treated as a point
injection source (Desroches and Thiercelin [2], Savitski [7], Adachi et al. [1]). Because
compressibility effects are not considered, these models are in fact inappropriate to describe
fracture breakdown and the early fracture growth. In this paper we consider the problem
of a radial penny-shaped fracture transverse to a borehole with finite radius. The fracture
is driven in an impermeable elastic material by a compressible fluid assumed to be inviscid.
The development proposed in this paper deals with the role of the fluid compressibility and
the borehole finite radius upon the early stage of fracture propagation. A solution is pro-
posed in terms of fracture radius, inlet opening and injection pressure for the simplified case
of an inviscid fluid, for which the pressure gradient along the fracture is neglected.
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Figure 1: (a) Transverse fracture of length � and (b) penny-shaped fracture of radius ��

2 ANALYTICAL MODEL
Consider the geometries shown in Fig. 1. In the following we refer to the conditions when
the radius of the fracture is of the same order as the borehole radius �� as a “transverse
fracture” (case a). In the limit when the borehole radius becomes negligible with respect
to the crack radius, the solution degenerates into the classical penny-shaped crack solution
(case b). The comparisons that follow are made between the transverse fracture (a) of radius
� = �+�� as described above, and a penny-shaped fracture of same external radius �.

The elastic relation between the fracture opening profile and the net pressure in the
fracture is given by an integral equation in which the influence of the finite borehole radius
is introduced with the approximated kernels developed by Nilson and Proffer [6]. The
propagation condition is expressed within the framework of linear elastic fracture mechanics
(Kanninen and Popelar [5]). The local form of the continuity equation for the fluid flow
in the fracture and the global fluid volume balance describing the fluid exchange between
the borehole and the fracture are both verified. The boundary condition at the fracture
inlet is given in terms of flow rate, including the component due to fluid compression. The
boundary condition at the fracture tip specifies that the fluid flow rate is zero .

Following the approach described by Detournay [3], we express the opening �(�� �)� net
pressure �(�), crack length �(�) and flow rate per unit radius 	(�� �) as

� = 
�Ω(��P)� � = 
0Π(P)� � = �� (P) � 	 = �0

�
Ψ (��P)

where 
(�) is a small parameter, �(�) is a length scale and P(�) is a dimensionless evolution
parameter and the dimensionless variables � = ����, � = ����, and � = ���� have been
introduced.

We define two scalings, denoted as �̆- and �-scaling (see Fig. 2), each one adapted
to describe a limiting propagation regime for which the fracture evolution is self-similar and
the solution depends only on the dimensionless space variable �. The regime transition of
the fracture response along the �̆� axis is governed by the single evolution parameter S�
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Figure 2: Compressibility to storage scaling axis.

In the “storage-toughness” scaling, denoted as �-scaling, the solution depends on the
evolution parameter C� For small values of C� the solution approaches the �-vertex where
the regime of propagation is dominated by the toughness of the material. The amount of
fluid stored into the wellbore by compression is negligible. The parameters 
���P specialize
as
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In the “compressibility-toughness” scaling, denoted as �̆-scaling, the solution depends
on the evolution parameter S� When S tends toward zero, the solution approaches the �̆-
vertex where the propagation regime is controlled by fluid compression in the wellbore or
the sudden release of the compressed fluid toward the propagating fracture. The parameters

� ��P now specialize as
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These two scalings are obviously equivalent and furthermore S = C−5, which can also
be interpreted as a dimensionless time to the sixth power. Thus, the solution along the
�̆� axis for a penny-shaped crack can be expressed either in the �-scaling in the form
F �̆ (��S) = {��̆ (S), Π�̆ (S), Ω�̆ (��S)) or in the �-scaling in the form F� (�� C) = {�� (C),
Π� (C), Ω� (�� C))� Near a vertex, however, the solution has to be expressed in the associate
scaling to remain finite. As an example, the dimensionless pressure Π�̆ is plotted as a
function of S in Fig. 3.
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Figure 3: Two branches of the evolution curve of the dimensionless pressure with respect to
the evolution parameter S

The two branches in Fig. 3 indicate the existence of an instability. The upper branch
gives a solution for a small crack with high pressurization of the borehole and flaw. The
second possible solution for the same S lies on the lower branch and exists for a larger crack
with a lower pressure.

Let the dimensionless length Λ0 be defined as Λ0 = �0��̄, where �̄ is a fixed length scale
which is a combination of physical parameters, �̄ = (���0

0)1�3. Fracture breakdown occurs
for the smallest value of the evolution parameter S0 for which the propagation condition is
verified, for a given initial flaw length Λ0. The parameter S0 gives the position of the initial
solution in Fig. 3. It is a measure of the injection time required for the fluid to reach the
initial propagation pressure Π0�

If the initial solution Π0(S0) is located on the upper branch, which corresponds to the
toughness-compressibility regime, the solution jumps from Π0�(S0) to Π0�(S0) as soon as
the propagation condition is satisfied. Conversely, if the initial solution Π0(S0) is located
on the lower, stable branch of Π�̆(S) which corresponds to toughness-storage regime, the
fracture growth is stable at breakdown�

The minimal value Smin of S0 is associated to the largest value of the initial flaw length
Λ0 for which the effect of compressibility would result in an initially unstable fracture growth
regime. If Λ0 � Λ�̆min, the initial solution is on the upper branch in Fig. 3 and the fracture
propagation is unstable after breakdown. The expression of Λ�̆min is obtained from the
observation that S�̆min must correspond to the minimum of S(Π�̆)� The criterion for initial
stable propagation can thus be expressed in term of the physical set of parameter under the
form

Λ0 � Λ�̆min or �0 � �∗ (3)

where the critical initial flaw length �∗ can be expressed in term of the test parameters as
�∗ =

¡
3
80���00¢1�3 �

If the radius of the borehole cannot be neglected compared to the fracture radius, the



solution depends on the additional parameter � defined as � = ����̄. Each value of �
will yield a realization of the solution ��̆ (S� �), Π�̆ (S� �), Ω�̆ (S� �). Since the nature of the
solution does not change fundamentally with the introduction of a finite �� the observations
derived for a penny-shaped crack propagating in an infinite medium (� = 0) hold for the
case of a transverse crack.

3 COMPARISON WITH EXPERIMENTS
We propose an illustration of the solution for a specific value of � computed from the
tests parameters selected for a laboratory scale experiment conducted in a block of PMMA
[4]. The values of the test parameters needed by the model are: �� = 9.2 10−10 Pa−1,
�0 = 0�110 mm3, 0 = 4 · 103 MPa, �0 = 1�5 mm, �� = 8�35 mm, ��� = 1�38 MPa.m1�2,
�0 = 0�158mm3/s. For an initial flaw size measured to be �0 ' 1�5 mm, the model predicts
a breakdown pressure

�0 =

√
�

2
√
�� + �0�(�)

��� = 19�6MPa (4)

which is very close to the 19.9 MPa observed in the experiment. The critical initial flaw
length is �∗ = 23 mm. Noting that the initial flaw length for this experiment was 1.5 mm,
the initial unstable growth observed after breakdown is thus in agreement with the model.
The model predictions are re-scaled into the physical space to construct the variations of
�(�)� �(�)� �0(�) and are compared with the experimental curves, as shown in Fig. 4.
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Figure 4: Comparison of the experimental results with the fracture inlet opening, radius
growth and net pressure for the model including a finite radius wellbore.

The initial discrepancy between the experimental curve and the solution may be partly
explained by the fact that the sensors measuring the fracture width are slightly offset from



the injection point. It takes a few seconds from the time of breakdown before the fracture
front reaches the point were the fracture width is measured and the width at the measure-
ment point will be less than it is at the borehole.

4 CONCLUSIONS
A model has been proposed for the propagation of a radial crack transverse to a borehole
with a finite radius. The crack is assumed to be driven by an inviscid compressible fluid.
The results presented in the previous section illustrate the model predictions of the initial
unstable growth observed immediately after breakdown during the experiments. The the-
oretical values for fracture radius, fracture inlet opening and borehole treatment pressure
at the end of the unstable growth are in good agreement with the experimental data. The
stable propagation regime that follows the unstable growth is also reasonably well described
by the model. Some discrepancy between the model output and experimental findings could
be attributed to the block finite geometry. The effect of viscosity on radius and width is
consistent with the observed differences, but the measured pressure is lower than the model
prediction, which is not explained by lack of viscous effects in the model.
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