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ABSTRACT  
 
The present work is a continuation of the author’s research on a macrocrack propagation in stochastically inhomogeneous 
materials (Romalis, 1975, 2003) 

A stochastically inhomogeneous material is understood in a sense that elastic moduli are random functions of coordinates. 
The effective elastic moduli of such materials become functions of geometric parameters of solids, particularly, 
macrocracks. A macrocrack present in a material creates a new boundary, therefore a boundary value problem  for a 
stochastically inhomogeneous material is considered.  It was shown, using stochastic linearization, that, in a frame of linear 
elasticity, the  average stresses have a well-known  singularity at the macrocrack tip, which  justified an introduction  of the 
effective stress intensity factor (ESIF). Asymptotic solutions to the problem were obtained as power series expansion over 
a small parameter representing a ratio of  a size of a microdefect or microinclusion to a macrocrack size, with coefficients 
of the series depending on statistical characteristics of   microvoid or microinclusion distributions. 
 
The effective stress intensity factors (ESIF) for randomly distributed microcracks, microvoids,  and for 2-phase composite 
material with elastic microinclusions were obtained as functions of  effective elastic moduli of material and  statistical 
characteristics of a material structure distribution. The radius of convergence of the series solution was determined as a 
function of  concentrations and mechanical properties of inclusions. All calculations were performed by  Mathematica.  

 
 

INTRODUCTION 
 
The Effective Stress Intensity Factors in stochastically inhomogeneous materials are considered where stochastically 
inhomogeneous materials are understood in the sense that elastic moduli are random functions of coordinates. The 
assumption of small fluctuations of elastic moduli from their averages was made. There is a number of theoretical models 
which have been developed to predict the effective elastic moduli of composite materials (see, for example, review by 
Christensen (1991)). However, the effective elastic moduli are not the local characteristics. Since a crack forms a new 
boundary, a corresponding boundary value problem must be considered. The boundary value problem for the crack in 
stochastically inhomogeneous material for the plane problem was discussed earlier by Romalis (1975, 1999). Now we 
consider an estimation of the upper and lower bounds of effective stress intensity factors (SIF) and critical loads in 
nonhomogeneous materials. 
 It was shown  by Romalis (1975)  that in  the frame of the linear elasticity means of the stresses in the vicinity of the 
radius  r  of the crack still have a well known order (r)-1/2 of singularity which justifies the introduction of the “effective 
stress intensity factors (SIF)” for stochastically inhomogeneous materials with cracks. In present work, statistical 
characteristics of effective SIFs are determined for the plane elasticity problem of inhomogeneous material as functions of 
the statistical characteristics of the material. 

 
STATEMENT OF THE PROBLEM 

 
The closed system of the equations of  the plane elasticity in heterogeneous body has a following form 
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where  ijσ  are stresses,  are known deterministic functions on the boundary L, and elastic constants  q  and  jg γ  

 
are introduced as functions of the Young modulus  E and the Poisson ratio ν . 
 
 
 
 
 
 
 
 
 
 
 
 



 Let q(x,y) and  ),( yxγ  be random functions of coordinates. Then the problem (1) is statistically nonlinear with respect 

to the random functions ijσ . Problem (1) can be linearized if we assume that functions  q(x,y)  and  ),( yxγ  are 

statistically  homogeneous, that is, their means: constconstq == γ;  , and can be represented as sums of 

their means and  perturbations. We seek a solution to the problem as a power series over the parameter  λ  in the 
following form 
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SERIES SOLUTION 

Introducing complex variable  z  and substituting  (2) into (1), and equating factors of the same  powers of  λ , 
we can obtain the boundary value problem for initial approximation 
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and recurrence sequence of statistically linear boundary value problems for successive approximations of the stresses 
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(boundary conditions),  where  expressions  consist of the sums of products of 

the following type .  
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The boundary value problem (3) is a problem for the homogeneous solid with a crack loaded with a given stresses, while 
recurrence relations  (4) are the boundary value problems for a crack free of tractions in a solid with distributed body 
forces. Let us consider the infinite plane (in case of the plane stress), or an infinite cylindrical body ( for the plane strain) 
with a crack of the length  2l  whose banks are loaded with the given forces. Using the Airy function U (x , y ), the problem 
(4) can be reduced to a biharmonic  inhomogeneous equation for each approximation 
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Solution  to the problem (5) was obtained as a sum of solutions to two sub-problems: (I) the inhomogeneous problem 

for the infinite body without the crack, and (II) homogeneous problem for the infinite body with a cut  loaded  with stresses 
opposite to those acting on the cut trace from the problem (I). The problem (I) was solved using the Green’s function for 
the biharmonic equation for the infinite plane. The problem (II) for the infinite plane  with a linear cut on [ -l ,  l ] can be  

 
 
 
 
 
 
 
 
 



written in the following form 
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where ( ,Y ) and  ( ,Y ) represent, correspondingly, resultant vectors of the forces applied to the cut 

line, obtained from the solution  of the problem (I), was solved by the Muskelishvili (1963). The complex potentials for the 
k –th approximation were found in the following form 
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where  are stresses on the trace of the cut that was found  by the Airy function as a solution of the non-

homogeneous biharmonic equation. It was shown by the asymptotic analysis that means of the complex potentials 

preserved their ordered of singularity  of  at the  tips of the crack, which justifies introduction of the effective 
stress intensity factor  (SIF) in the non-homogeneous solid with a crack whose   k –th approximation  has a form 
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The statistical characteristics of the material’s  elastic moduli are involved into expression 
)1( −kf . The further 

analysis was conducted under the assumption that elastic moduli’s fluctuations are normally distributed. Then the standard 
deviations of the effective SIF’s were derived in the integral form, analogous to (6). We consider two-phase material with 
small elastic inclusions. The compliances of the composite material were used in the following form suggested by Dundurs 
and Jasiuk (1996) 
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where  indices “1” and “2” denote the different phases, and   c  is a random fraction of the inclusions. For  voids or 

microcracks the following expression for elastic moduli was used 1 2 (1 )E E c E c= + −  with mean of  the value of c 

evaluated by 
2 2

2
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nαω= =  where  ω is the average density of microdefects, n is an average number of 

microdefects in a  l x l  square, and  N is the total number of microdefects in a body with a cross-section A. Substituting the 
statistical characteristics of compliances into (6) mean and the standard deviation of the ESIF’s were obtained. Iw was 
shown  that statistical moments of odd order were equal to zero. Using the correlation theory, statistical moments of even  
orders  can be introduced through the correlation function in the assumption  that ordinates of the fluctuation of 
compliances are normally distributed. 
 
 By the  Erdogan and Sih(1963) criterion a crack starts propagating in the direction perpendicular to the direction of the 
maximum tensile loads was used. The angle of the initial expanding was assumed  be equal to 
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with a corresponding  fracture criterion 
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where  is  a fracture constant. Formulas (8) and (9) can be easily combined to determine the dimensionless  critical 

load 
ICK

        IcIII KlpKKF /),( =          (10) 

of the crack extension, where p is an external load, and l  is a crack length. . Assuming  that both modes of the stress 
intensity factors are normally distributed, and considering a left side of (10) as a function of two random variables, mean 
and standard deviation of the function F  were determined as a function of statistical characteristics of inclusions, and the 
inclusion/crack ratios. 
 Using  the Tchebyshev’s theorem, the upper and lower bounds of the average of the dimensionless critical load 
were determined as a function of geometry and statistical characteristic of inclusions.  

 
CONCLUSION 

 
      Suggested approach allows to obtain an approximation of the bounds of mean of the effective  fracture loads  in 
stochastically inhomogeneous materials. Another approach to modeling  a macrocrack in stochastically inhomogeneous  
material consists of study of an explicit interaction  of the macrocrack with a microcrack, micropore or microinclusion ( see 
review by Tamuzs at al (2000). One of such model was developed by Romalis and Tamuzs (1984), and applied to various 
problems in (Tamuzs et al (2000). Modeling a crack in non-homogeneous solid and assuming a desired density of 
microdefects generated randomly, means of the critical loads were found on the basis of   n   such generated realizations. 
Review of other approaches is given  by  Petrova et al (2000). 
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