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ABSTRACT

The eXtended Finite Element Method (X-FEM) was used with success in the past few years for
Linear Elastic Fracture Mechanics. In this paper we propose to extend this method to fatigue crack
growth analysis in the case of confined plasticity. A new plastic enrichement basis is therefore
extracted from HRR non-linear fields and introduced in X-FEM coupled with a Newton like iteration
scheme and a radial return method for plastic flow. Comparisons are made for mode I loading with
a finite element code and show good agreements.

1. INTRODUCTION
This paper presents, in the context of the eXtended Finite Element Method, an elastic-plastic fatigue
crack growth without remeshing analysis in homogeneous, isotropic, two-dimensional solids subject
to mixed mode loading conditions. This method is based on asymptotic crack-tip fields under elastic-
plastic conditions also called HHR fields (see Hutchinson [1] and Rice and Rosengren [2]) and
involves an X-FEM formulation with elastic-plastic enrichment functions similar to those proposed
in Rao and Rahman [3] (coupled with a meshless method). A Fourrier analysis of these functions
shows that they are capable of capturing the HHR singularities. A numerical example is presented
to illustrate the proposed method and compare it with finite element results.

2. ELASTIC-PLASTIC ENRICHMENT BASIS
2.1. Space discretization - Elastic case
In the presented method, we use the eXtended Finite Element Method, first introduced in Black et
al. [4] and Moës et al. [5], in which an enrichment basis is added to the classical finite element
basis approximation. This is done using the partition of unity method developped in Babuska and
Melenk [6]. The enriched basis shape functions are associated to new degrees of freedom and the
displacement field can be written (see Moës et al. [5]):

U =
∑

i∈N

Ni(x)Ui +
∑

i∈Ncut

Ni(x)H(x)ai +
∑

i∈Nbranch

∑

α

Ni(x)Bα(x)bi,α (1)

N is the set of the standard finite element nodes, Ncut the set of nodes which belong to elements
completely cut by the crack and Nbranch the set of nodes containing a crack front. Ni are the
standard finite element shape functions, H is a Heaviside function which value is 1 if x is above the
crack surface and -1 if x is under. [Bα] is derived from the LEFM asymptotic displacement field
(see Fleming et al. [7])
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2.2. Elastic-plastic case
In the case of non-linear materials, the asymptotic displacement field is different and the basis
presented in Eq.2 is no more valid. For power-law hardening elastic-plastic material, asymptotic
displacement fields (also called Hutchinson-Rice-Rosengren singularity fields) can be calculated
(see Hutchinson [1] and Rice and Rosengren [2] for mode I conditions and Pan [8] and Pan and
Shih [9] for mode II, III and combined conditions). The uniaxial stress-strain relation is given by the
Ramberg-Osgood law:
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with σ0 the reference stress, ε0 = σ0/E the reference strain, E Young’s modulus, α a material
constant and n the hardening exponent. The displacement is proportional to a power of r but depends
on the hardening exponent n for pure in-plane loading condition

ui ∼ r
1

n+1 ũi(θ, n) (4)

After the calculation of the ũi(θ, n) functions for various n a Fourrier analysis is performed. In order
to verify the hypothesis of the Fourrier analysis, the tilde functions are extended from the interval
[0; π] to the interval [0; 4π], by preserving symmetry and anti-symmetry of the elastic asymptotic
field, and the variable is taken to be θ/2 instead of θ. It appears that using the eight first non-zero
harmonics ( cos(kθ/2) and sin(kθ/2) for k in {1, 3, 5, 7}) is sufficient to describe the HRR fields as
shown in Figure 1. The elastic enriched basis is then replaced by the one presented in Eq.5, in which
the Fourrier terms have been combined in order to have only one function which is discontinuous
between θ = π and θ = −π.
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Figure 1. Approximation of HRR displacement field for mode I plane strain
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2.3. Implementation in X-FEM
The elastic tip enrichment is replaced by the plastic tip enrichment given in Eq. 5. A Newton
iterative procedure is used to compute equilibrium equation and a radial return scheme for the plastic
flow. Gauss quadrature points are used to compute plastic flow. For elements cut by the crack high
order terms in Eq5 require a new integration scheme with high number of Gauss quadrature points
quadrangles.

3. NUMERICAL EXAMPLE
A mode I SE(T) specimen was chosen, with n = 3.7. Comparison is made between a standard
finite element code with a mesh composed of 892 six nodes triangle elements and a 380 four nodes
quadrangles in X-FEM with discontinuous enrichment and a four terms plastic enriched basis for
crack tip. Results are presented on Figure 2 for the Crack Opening Displacement and show good
agreements between FE and X-FEM computations.
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Figure 2. Comparison of the COD

4. CONCLUSION
An X-FEM elastic-plastic fatigue crack growth without remeshing analysis in homogeneous,
isotropic, two-dimensional solids is presented. The method involves a new enriched basis function
to capture the Hutchinson-Rice-Resengren singularity fields in elastic-plastic fracture mechanics.
A numerical example is presented to illustrate the proposed method. Fracture parameters, such
as crack tip opening displacement, evaluated by the proposed method is in good agreement with
elastic-plastic finite element results.
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