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ABSTRACT
A numerical model formulated within the framework of a nonsymmetric strong discontinuity approach (SDA)
for fracture simulations of plain concrete represents the point of departure for the present study. The model
based on the assumption of fixed cracks exploits the concept of the elements with embedded discontinuities.
Discontinuity segments of individual elements are considered to form a C0-continuous discontinuity surface.
Enforcement of continuity across adjacent elements is established by a partial domain tracking algorithm
(PDTA). Within the present work emphasis is put on the tracking of crack surfaces across three-dimensional
discretizations for the SDA-model. A three-dimensional implementation of the PDTA is outlined and investi-
gated by means of academic problems. Application of the algorithm to the tracking of an arbitrarily shaped 3D
crack surface is demonstrated.

1 INTRODUCTION
The strong discontinuity approach (SDA) has gained wide popularity in numerical simulations of
concrete fracture over the last years. The SDA starts from the formulation of the strong disconti-
nuity kinematics which idealize the existence of a macroscopic crack as a discontinuity within the
displacement field. It furthermore makes use of a special type of elements, termed as the elements
with embedded discontinuities. These elements are characterized by the embedment of discontinuity
segments within their element domains. The discontinuity segments can cross individual elements
and consequently any spatial discretization of some solid in a nearly arbitrary way. Hence, in contrast
to the classical smeared crack approach these elements allow a proper resolution of the kinematics
related to macroscopic cracking and in contrast to discrete crack-models avoid the use of extensive
remeshing.

In principle, the discontinuity segments found in individual elements could be placed within the
respective element domains based solely on local information. This implies that in general these
segments do not form a C0-continuous discontinuity surface across adjacent elements. However,
it is shown in [1], [2] that continuity of the discontinuity surface is mandatory in order to obtain
objective results, i.e. results that do not depend on the employed discretization.

In order to enforce continuity of discontinuity surfaces, so called tracking algorithms [3] are used.
A local tracking algorithm is based on geometric considerations whereas within the global tracking
algorithm [3] the discontinuity surface is represented by the isosurface of a scalar field. Beside these
two algorithms in [4] a partial domain tracking algorithm (PDTA) was proposed and the necessary
steps were given for tracking of discontinuities across two-dimensional discretizations. The present
work is primarily dedicated to its extension to three-dimensional problems. At first, however, the
numerical model based on the SDA is outlined.

2 THE STRONG DISCONTINUITY APPROACH
2.1 The strong discontinuity kinematics
Consider a body B occupying a closed domain Ω ⊂ R

3, with material points whose locations are
defined by x ∈ Ω. Let Ω be split by an internal discontinuity surface Γ ⊂ R

2 – uniquely defined
by its normal vector n – into two disjoint parts Ω+ and Ω−. In addition assume the existence of a



yet arbitrary subdomain Ωϕ ⊂ Ω which serves as the support of a function ϕ(x). The displacement
field characterized by the presence of the discontinuity surface Γ is then decomposed as

u(x) = ū(x) + [HΓ(x) − ϕ(x)] [[u]](x) (1)

where HΓ denotes the HEAVISIDE-function centered on Γ. Both, ū(x) and [[u]](x) are smooth,
continuous functions on Ω. The magnitude of the displacement jump across Γ – termed as [[u]]Γ –
is given by the value of [[u]] at the discontinuity such that [[u]]Γ = [[u]](x) ∀x ∈ Γ. Function
ϕ(x) in eqn (1) is used to restrict the effect of the displacement jump [[u]]Γ to domain Ωϕ which is
established by postulating for ϕ(x)

ϕ(x) =







0 ∀x ∈ Ω− \ Ω−
ϕ

1 ∀x ∈ Ω+ \ Ω+
ϕ

C0 − continuous in interval [0, 1] ∀x ∈ Ωϕ

. (2)

Adopting the linearized kinematic relations the strain field follows from eqn (1) as

ε(x) = ∇
su(x) = ∇

sū(x) − ([[u]](x) ⊗ ∇ϕ(x))
s

︸ ︷︷ ︸

ε̄(x) (regular) ∀x∈Ω\Γ

+ δΓ(x) ([[u]](x) ⊗ n)
s

︸ ︷︷ ︸

εδ(x) (singular) ∀x∈Γ

(3)

with δΓ as the DIRAC-delta function. In eqn (3) it is utilized that ∇HΓ = n δΓ and it is assumed
that ∇

s[[u]](x) = 0, which is justified by the particular finite element implementation. The regular
part in eqn (3) is defined for x ∈ Ω \ Γ and can be decomposed following the enhanced assumed
strain (EAS) concept as

ε̄(x) = ∇
sū(x)

︸ ︷︷ ︸

ε̂ (compatible)

− ([[u]](x) ⊗ ∇ϕ(x))
s

︸ ︷︷ ︸

ε̃(x) (enhanced)

. (4)

2.2 Finite element discretization
Finite element discretization of a solid B is accomplished by employing elements with embedded
discontinuities [5]. To this end, subdomain Ωϕ is approximated by the band of those elements
exhibiting active embedded discontinuities. For a particular element e of this type the displacement
field given in eqn (1) is approximated by

u(e)(x) ≈

ne∑

i=1

N
(e)
i (x) di + [H

(e)
Γ (x) − ϕ(e)(x)] [[u]]

(e)
Γ (5)

with N
(e)
i as the standard interpolation function associated with node i and the respective displace-

ment vector di. Displacement field [[u]] in eqn (1) is approximated through vector [[u]]
(e)
Γ considered

to be constant within element e (which justifies assuming ∇
s[[u]] = 0 in eqn (3)) and defined as

[[u]]
(e)
Γ = ζ(e) · m(e) (6)

with ζ(e) as the amplitude of the displacement jump associated with element e and m(e) as the re-
spective direction unit vector. In the simplest case – corresponding to mode-I fracture – considering
only normal crack openings across Γ, m ≡ n holds. In order to fulfill eqn (2) function ϕ(e) is
approximated by

ϕ(e) =

n+
e∑

i=1

Ni (7)



with the right hand side representing the sum of the standard shape functions Ni associated with
those nodes of element e located at the positive side of Γ(e). With eqns (1) and (6) at hand, the
regular part of the strain field ε̄ in eqn (4) can be written for element e as

ε̄(e)(x) ≈

ne∑

i=1

(

∇N
(e)
i (x) ⊗ di

)s

︸ ︷︷ ︸

ε̂ compatible

− ζ(e)
(

∇ϕ(e)(x) ⊗ m(e)
)s

︸ ︷︷ ︸

ε̃ enhanced

(8)

with ∇ϕ(e) =
∑n+

e

i=1 ∂xNi following from eqn (7).

2.3 Solving for the displacement jump
In eqn (8) the magnitude of the displacement jump ζ (e) can be determined by employing a standard
return mapping procedure [6]. To this end the compatible part ε̂ of the regular strain field in eqn (8) is
considered as the elastic strain, whereas the enhanced part ε̃ is interpreted as the inelastic strain [7].
Hence, the magnitudes of the displacement jumps ζ (e) can be solved independently for each element
indicating cracking [2]. It is emphasized that the present formulation is based on the fixed crack
concept with vector m(e) in eqn (8) considered as invariable with respect to time.

3 TRACKING OF DISCONTINUITY SURFACES
In [2] it is shown that discontinuity segments Γ(e) cannot be arbitrarily placed within individual
element domains. In order to obtain objective, i.e. mesh-independent, results it is rather necessary
to enforce continuity of discontinuity segments across adjacent element faces such that a physical
discontinuity, i.e. a macroscopic crack, is geometrically represented by the C0-continuous approxi-
mation

Γ ≈

ndis

elem⋃

i=1

Γe (9)

with ndis
elem as the number of those elements exhibiting a displacement discontinuity, i.e. those

forming Ωϕ. A discontinuity is considered to emerge from a certain material point, i.e. its root. In a
finite element setting the root is established by the root element, i.e. that element, for which cracking
is indicated and which cannot be joined with one of the existing discontinuities.

3.1 The partial domain tracking algorithm
In order to enforce continuity of discontinuity surfaces so called tracking algorithms [3] are used.
In [4] a partial domain tracking algorithm (PDTA) was proposed and the necessary steps were
outlined for tracking of discontinuities across two-dimensional discretizations employing linear tri-
angular elements. Within this algorithm – similar to the global tracking algorithm [3] – a particular
discontinuity surface is represented by the isosurface of a scalar field θ(x). In contrast to the global
tracking algorithm, however, this scalar field is constructed only within those elements that are actu-
ally or potentially will be affected by the discontinuity surface. In the following the algorithm will
be outlined for three-dimensional discretizations employing linear tetrahedron (four node) elements.

For an element e – crossed by a discontinuity surface – the scalar field θ(e) must fulfill

s(e) · ∇θ(e) = 0

t(e) · ∇θ(e) = 0,
(10)

where s(e) and t(e) denote a set of vectors in the plane of the discontinuity segment Γ(e). Conse-



quently,
n(e) · s(e) = n(e) · t(e) = 0 (11)

holds and for the scalar field θ(e) within element e it follows that

∇θ(e) = c · n(e) c ∈ R
+. (12)

Construction of scalar field θ(x) is established sequentially starting from the root element for
which θ(e=r) is found according to (12) by prescribing an arbitrary value θΓ ∈ R at its centroid and
an arbitrary value c ∈ R

+. Then, element e + 1 exhibiting face-connectivity with element e = r is
identified. The scalar field θ(e+1) is already known at the nodes of the common face with element e
and is undetermined only at one single node. Thus, for element e + 1 eqn (12), in general, cannot be
fulfilled for any c. Hence, eqn (12) is replaced by the optimization problem

‖η‖(e+1) = ‖∇θ(e+1) − c · n(e+1)‖ → min, (13)

minimizing the norm of vector η(e+1) representing the deviation between the gradient of field θ(e+1)

and the discontinuity normal vector n(e+1). In [2] a possible approach to solve eqn (13) for the single
nodal scalar value is given. The above procedure is repeated until for a particular element no adjacent
element can be found, i.e. until the boundaries of the discretized domain are reached.

Once field θ(x) is constructed it can be exploited at element level for determining the position
of discontinuity segment Γ(e) and the set of the nodes located at the positive side of Γ(e) in order to
derive function ϕ(e) in eqn (7). Since Γ(e) is represented by the isosurface θΓ = const for ϕ(e)

ϕ(e) =

n+
e∑

i=1

Ni with n+
e : nk|θk − θΓ > 0 (14)

must hold.

3.2 Academic examples
Construction of field θ(x) is shown by tracking given discontinuities within a cube of dimension
L occupying Ω ⊂ R

3 and regularly discretized by nelem = 1500 linear tetrahedron elements as
shown in Fig. 1a. One of the elements serves as a root element r associated with discontinuity Γ as

(c)(b) (d)(a)
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z

Figure 1: Numerical study of discontinuity tracking for three-dimensional discretizations: (a) cubic
domain discretized with linear tetrahedron elements; isosurfaces θΓ = const for disconti-
nuity surfaces prescribed by (b) a vertical plane, (c) an inclined plane, (d) a sphere.



indicated in Fig. 1a. Tracking of the discontinuity is investigated for three cases of imposed discon-
tinuity normal vectors n(e) ∀e ∈ {1 . . . nelem}: (i) n(e) = b1, 0, 0cT describing a vertical, plane
discontinuity surface, (ii) n(e) = b0.925, 0.337, 0.174cT describing an inclined plane discontinuity
surface and (iii) n(e) = x

(e)
cen/‖x

(e)
cen‖ with x

(e)
cen as the coordinates of the centroid of element e

and hence describing a spherical discontinuity surface. The isosurfaces associated with the scalar
value imposed at the centroid of root r corresponding to the three different cases are depicted in
Figs. 1b-d. It is seen that in all cases the discontinuity surface described by the imposed normal
vectors is nicely reproduced by the respective isosurface. Since in the first two cases a plane surface
is obtained, ‖η‖(e) = 0 ∀e ∈ {1 . . . nelem

dis } holds. For the spherical surface ‖η‖(e) 6= 0. However,
‖η‖(e) is small, not exceeding 2 · 10−2. It is emphasized that this is not a drawback but an essential
consequence of the algorithm.

4 NUMERICAL EXAMPLE
Application of the proposed algorithm to tracking of an arbitrary 3D-crack surface is now shown for
the numerical simulation of the PCT-3D-experiment [2]. The experiment was conducted on a beam-
shaped specimen (600/180/180 mm) with a triangular notch placed eccentrically both in transversal
and longitudinal direction. The load is applied as a point load also acting eccentrically in transversal
and longitudinal direction. As a result a doubly curved crack-surface is obtained [2]. The tracking
algorithm is applied to a finite element discretization of the specimen characterized by 14034 linear

(b)(a)
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plane through notch [mm]

(c)

experimental
numerical

Figure 2: Experiment PCT-3D: (a) crack surface observed at the specimen, (b) elements identified
by the PDTA as crossed by the discontinuity surface.



tetrahedron elements and 2794 nodes.
The experimentally obtained crack surface is depicted in Fig. 2a. Application of the PDTA to the

finite element discretization allows to identify those elements that are actually or potentially will be
crossed by the doubly curved discontinuity surface (Fig. 2b). As can be seen the respective partial
domain shows a very good agreement with the experimentally obtained crack-surface. The good
correspondence is even more evident from the comparison of the experimentally obtained and nu-
merically resolved trace of the crack-surface along the developed surface (rotated counterclockwise
by 90 ˚ ) of the specimen given in Fig. 2c.

5 CONCLUSIONS AND OUTLOOK
A numerical model formulated within the Strong Discontinuity Approach for three-dimensional
fracture simulations was outlined. In order to enforce a C0-continuous geometric representation
of a particular discontinuity surface, a tracking algorithm was devised. Within this algorithm the
discontinuity surface is represented by the isosurface of a scalar field which is constructed over a
certain subdomain of the domain under consideration for the mechanical problem. Hence, it was
termed as a partial domain tracking algorithm (PDTA). Its basic capabilities were shown by some
academic examples. Application of the algorithm to a problem involving an arbitrarily shaped, 3D
crack-surface demonstrated its general capabilities.
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