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ABSTRACT

     Stress singularity at a vertex in three-dimensional joints is closely related to the strength of

joints.  It is very important to analyze for evaluating the reliability in a three-dimensional joint.

However, the stress singularity field near a vertex and along a stress singularity line is not made still

clear.  In the present study, we investigated the characteristics of stress singularity field at a vertex

and a point located on the stress singularity line in three-dimensional joints using a three-dimen-

sional BEM with a fundamental solution for two-phase materials and an eigen analysis based on

FEM.  A 3-ple root and a 5-ple root of eigen value, p=1, occur at the vertex and a point on the

singularity line, respectively.  The variation of stress distribution in a cylindrical coordinate system

concerned with a point on the singular line with a distance from the vertex is examined using BEM.

The order of stress singularity deduced from the stress distribution is compared with that deduced

from the eigen analysis.  The slope of the stress distribution reduced the logarithmic singularity

terms was fairly agreed with the order of stress singularity calculated by the eigen analysis.  It was

shown that the order of stress singularity at the vertex was larger than that at the point on the stress

singularity line, and the effect of logarithmic singularity along the singularity line on the stress

distribution is larger than that at vertex.  The value of coefficient in a power-law singularity in-

creased as approaching to the vertex along the singularity line.  In particular, all coefficients of

terms in logarithmic singularity vary in the same way with the angle from an interface.

1 INTRODUCTION

     There are a lot of investigations on stress singularity in joints.  Stresses increase to infinity as

approaching to a point with stress singularity, however, displacement at the point bounds a finite.

An intersection of an interface in a joint and a free surface becomes a stress singularity line.  In two-

dimensional joints, the intersection of an interface and a free surface is a stress singular point.  A lot

of studies on joints were concerned with two-dimensional ones.  It is found that the order of stress

singularity at a vertex in three-dimensional joints is greater than that at edge in two-dimensional

ones (Koguchi [1]).  A crack and the delamination of interface at the vertex occur easily in three-

dimensional joints.  However, the characteristic of stress distribution near the vertex in three-di-



mensional joints is not make clear until now.  In the previous study on three-dimensional joints, the

authors showed that power law singularity and logarithmic singularity occur at the vertex from an

eigen value analysis (Koguchi [2]).  In the present study, the characteristic of stress distribution at

the vertex and along the stress singularity line will reveal using BEM with the fundamental solution

for two-phase materials and eigen analysis by FEM.

2 STRESS SINGULARITY ANALYSIS IN TWO-PHASE MATERIALS

     In the present study, the following equation in BEM is used for determining the stress distribu-

tion in a three-dimensional joint.
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where Uij
* and Tij

* are fundamental solutions for displacements and tractions which are derived from

Rongved s solution.  Observation point, P, and source point, Q, are located on the boundary of

domain.  t
j
 and u

j
 are traction and displacement vectors, respectively.  When Rongved s solution is

applied for the fundamental solution in BEM, mesh division on the interface is not needed and

displacements and stresses at any points in the domain are determined accurately.  Furthermore, the

order of stress singularity is deduced from an eigen analysis of FEM as follows.

p A p B C u2 0[ ] + [ ] + [ ]( ){ } = (2)

where [A], [B] and [C] are matrices composed of elastic moduli,  and p is the eigen value, which is

related with the order of stress singularity, λ, as following λ=1-p.

     Model for analysis is demonstrated in Fig.1.  The joint is 20mm in width, and 20mm in height.

Tensile load, P=1.0GPa, is applied on the upper surface and the displacement in the z-direction at

the lower surface is fixed.  Minimum length of mesh near the vertex is 0.8µm, and total node
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Fig.1  Joint model for analysis
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number and total element number are 3067 and 1370, respectively.  Materials used in the analysis

are resin and ceramics(Al
2
O

3
).  Elastic moduli are shown in Table 1.  Hereafter, the analyses at the

vertex and along the stress singularity line are referred to as 3D-corner analysis and 3D-line analy-

sis, respectively.

3  RESULTS OF 3D-CORNER ANALYSIS

     Figure 2 is a model used in the eigen analysis, in which the domain for analysis is a quarter or a

half of sphere with a origin located at the vertex or a point on stress singularity lines.  Mesh division

unfolded in a φ×θ plane is shown in Fig.2.  Size of mesh is φ×θ=9.0°×9.0°, and the total numbers of

node and element are 669 and 200, respectively.  Result of eigen analysis is shown in Table 2.  We

can obtain the eigen values for the freedom number of analytical model.  The smaller value of eigen

value is listed in turn up to 6.  The minimum value of eigen value is p=0.5982 and the next eigen

value is a 3-ple root of p=1.  The stress distribution near the vertex obtained by using BEM is shown

in Figs. 4 and 5.  Stress component, σθθ, is derived by transforming stress components in a Cartesian

coordinate system to those in a spherical coordinate system shown in Fig.3.  Plots are almost straight

in a log-log scale for several different angles, φ and θ.  Figure 4 represents a plot of stress on the

interface.  It is found that stress increases as the angle, φ, approaches to 0 and π/2.  Figure 5 shows

the distribution for different angles θ at angle of φ=45°.   In this case, the power-law singularity is

governs the stress fields at the vertex, furthermore the logarithmic singularity also occurs.  Then,

the stress can be expressed as follows.

σ θ θ θ θθθ
λP C r C C r C r= ( ) + ( ) + ( ) + ( )( )−

1 2 3 4

2
log log (3)

where r  represents r/L.  Coefficients of logarithmic singularity terms are determined using a least

square method.  The coefficients, C
1
, for the power-law singularity and C

i
(θ) (i=2,3,4) for the loga-

Table 1  Material properties used in the analysis

Table 2  Eigen values in Al
2
O

3
-Resin joint

                   Young s modulus  (GPa)     Poisson s ratio

Resin  2.97   0.38

Al
2
O

3
260.0   0.24

    Real  Imaginary         λ
1 0.5982423   0.0000000  0.4017577

2 1.0000002   0.0000000 -0.0000002

3 1.0000116   0.0000000 -0.0000116

4 1.0000056   0.0000000 -0.0000056

5 1.3258479   0.5675051 -0.3258479

6 1.3258479   0.5675051   0.3258479
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Fig.3  Spherical coodinate system with an origin at the vertex

rithmic singularity terms are shown in Figs.6 and 7, respectively.  You can see from Fig.7 that all

coefficients vary in the same manner for the angle θ.  Then, eqn(3) can be modified as

σ θ θθθ
λP C r C C r C r= ( ) + ( ) + + ( ){ }−

1 2 3 4

2
1 log log (4)

where C3 =1/86.36 and C4=-1/14.30.

Fig.6  Variation of coefficients in power-law

with angle θ
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4 RESULTS OF 3D-LINE ANALYSIS

     Model for BEM used in 3D-line analysis is the same as that in the 3D-corner analysis.  Model

used for eigen analysis is shown in Fig. 8.  Numbers of node and element are 341 and 100, respec-

tively.  Result of eigen analysis is listed in Table 3.  Minimum value of eigen value is 0.677, then the

order of stress singularity is 0.323.  This value is fairly agreed with the order of stress singularity in

plane strain condition for two-dimensional joint with the same material combination.  Furthermore,

a 5-ple root of eigen value of p=1 occurs in the 3D-joint, although single root of p=1 only occurs in

the two-dimensional joint with the same material combination as the 3D joint.  The distribution of
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Table 3  Eigen value in 3D-line analysis

Fig.10  Stress distribution, σθθ, against r /L
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 y=9.9872mm
 y=9.9744mm
 y=9.960mm
 y=9.9496mm

    Real Imaginary        λ
1 0.6774580  0.000000  0.3225420

2 1.0017762  0.000000 -0.0017762

3 1.0009080  0.000000  0.0009080

4 1.0000696  0.000000 -0.0000696

5 1.0001129  0.000000 -0.0001129

6 0.9999974  0.000000   0.0000026

7 1.7090509 -0.637774 -0.7090509



stress, σθθ, in the planes shown in Fig. 9, is shown in Fig. 10.  Where r  represents the distance from

an inner point to the origin.  Figure 11 represents the stress distribution against r /L for various

angle θ (see Fig.8) at y=9.9496mm.  Stress along stress singularity lines can be expressed consider-

ing the result of eigen analysis.

  σθθ P =C
1
*(θ ) r' -λ+C

2
*(θ )+C

3
*(θ )log r' +C

4
*(θ )(log r' )2+C

5
*(θ )(log r' )3+C

6
*(θ )(log r' )4   (5)

Coefficients, C
i
*(θ ), for logarithmic singularity terms are determined using a least square method,

and they are shown in Fig.12 against angle θ .  It is found that all coefficients in logarithmic singu-

larity terms vary with the angle θ  in the same manner.  Finally, stress, σθθ, can be expressed as

follows.

       σθθ P = C 1
*(θ ) r' -λ+ C 2

*(θ ){1+ C 3
*log r' + C 4

*(log r' )2+ C 5
*(log r' )3+ C 6

*(log r' )4} (6)

5 CONCLUSION

     In the present paper, characteristics of stress distribution in the stress singularity fields at the

vertex and on the stress singularity line were investigated using a three-dimensional BEM with

Rongved s fundamental solution and an eigen value analysis using FEM.  Stress, σθθ, at the vertex

can be expressed as a sum of the power-law singularity, r-λ, (logr)2, logr and constant terms.  On

other hand, stress, σθθ, at a point on the stress singularity line can be expressed as a sum of r-λ,

(logr)4, (logr)3, (logr)2, logr and constant terms depending on the multiplicity of p=1.
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Fig.11  Distribution of stress, σθθ, against r /L Fig.12  Variation of coefficients for angle θ
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