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ABSTRACT 

Microcraking process in concrete is readily monitored by acoustic emission (AE) technique.  Crack 
kinematics associated with nucleation of the fracture process zone are identified by AE-SiGMA procedure, by 
which crack locations, crack types and crack orientation are determined from the moment tensor analysis of 
AE waveforms. 

By applying SiGMA, microcracking process in the process zone is investigated in a  notched 
specimen of concrete.   A relation between the damage variable in damage mechanics and the moment 
tensor is derived.  The damage evolution in the fracture process zone is estimated under off-center bending.  
It is found that the damage evolve gradually in mode I failure along with mode-II failure and mixed-mode.    
Since the direction of crack extension can be derived from the eigenvectors of the moment tensor, the concept 
of the maximum circumferential stress is applied to estimate the normalized stress intensity factors.   In the 
beginning of microcraking process, mode I failure is dominant.  Then, mode II cracks are observed in the 
final stage. This result in SiGMA analysis is confirmed by BEM (boundary element method) analysis.   
 

1  INTRODUCTION 
The generalized theory of acoustic emission (AE) was established on the basis of elastodynamics 
(Ohtsu and Ono [1]).  Although AE waves due to microcracking are discussed in concrete, 
theoretical treatment is associated with elastic waves in a homogeneous medium (Ohtsu [2]).   
This is because elastodynamic properties of material constituents are physically dependent on the 
relation between the wavelengths and the characteristic dimensions of heterogeneity.   In the 
case that the wavelengths are even larger than the sizes of heterogeneous inclusions, the effect of 
heterogeneity is inconsequent.  This is the case of concrete, if the sizes of specimens are large 
enough compared with the wavelengths.  

Crack kinematics of AE source are defined by a crack motion vector (Burgers vector) and a 
normal vector to a crack plane.   These two vectors could leads to the moment tensor analysis 
(Ohtsu et al. [3]).   From the moment tensor, quantitative information on crack kinematics of 
crack locations, crack types and crack orientations is obtained.  In order to determine  moment 
tensor components from AE waveforms, SiGMA procedure (simplified Green's functions for 
moment tensor analysis) is developed (Ohtsu [4]).  AE sources are classified into tensile cracks 
and shear cracks by applying the eigenvalue analysis to the moment tensor, and the direction of 
crack motion is derived from the eigenvectors.    

In this paper, a relation between the damage variable in damage mechanics and the moment 
tensor is derived.  Then, the damage evolution in the fracture process zone of a notched concrete 
beam is estimated under off-center bending.   Since the direction of crack extension can be 
derived from the eigenvectors, the normalized stress intensity factors are estimated experimentally.   

 
2  MOMENT TENSOR AND DAMAGE EVOLUTION 

An elastodynamic solution of wave motion u(x,t) due to cracking is mathematically represented, 
 



      uk(x,t) =∫F Gkp,q(x,y,t) Cpqij nj*bi(y,t)dF = Gkp,q(x,y,t)*S(t) Cpqij njli∫F b(y)dF 
            = Gkp,q(x,y,t)*S(t) Cpqij njli∆V,                                        (1) 
 
where b(y,t) is the crack motion vector (Burgers vector) and the asterisk symbol * represents the 
convolution integral in time.  Cpqji are the elastic constants, and Gip,q(x,y,t) are the spatial 
derivatives of Green’s functions as they imply ∂Gip(x,y,t)/∂xq.  n is the normal vector to the crack 
surface, and l is the unit direction vector of the cack motion b(y).  S(t) is the source-time function 
of crack kinetics and ∆V is the crack volume.   

Since eqn (1) is fairly complicated and contains two vectors l and n, it is not suitable for an 
inverse problem.   Thus, introducing moment tensor Mpq, eqn (1) is simplified as eqn (3), 

 
     ∫F Cpqkl b(y)lk nl dF = Cpqkllknl [∫Fb(y)dF= Cpqkllknl ∆V= Mpq                         (2) 
 
     uk(x,t) = Gkp,q(x,y,t) Mpq*S(t).                                                (3)                  
 
The moment tensor, Mpq, is defined by the product of the elastic constants [N/m2] and the crack 
volume [m3], which leads to the moment as physical unit [Nm].   In the case of an isotropic 
material, 
      Mpq = λlknkδpq + 2µ(lpnq + lqnp)∆V,                                          (4) 
 
where λ and µ are Lame constants.   
     In damage mechanics (Kachanov [5]), damage tensor Dpq is defined as (Ohtsu and Ohtsuka 
[6]), 

Dpq = (lpnq + lqnp)∆V/(2V*).                                         (5) 
 
Here, V* is the representative volume.  Then, the scalar damage variable is derived， 
 

D = npDpqnq = lknk∆V/V*.                                                 (6) 
 
From eqn (4), a trace component is obtained, 

 
Mkk= (3λ + 2µ)lknk∆V.                                                    (7) 

 
Comparing eqn (7) with eqn (6), it is found that the trace component of the moment tensor is 
equivalent to the scalar damage variable.   Consequently, damage evolution can be estimated 
from the summation of the trace components of the moment tensors.  In addition, the 
accumulation of crack volumes is also relatively estimated from Mkk/lknk. 
 

3  SiGMA PROCEDURE 
For the analysis of the inverse problem for eqn (3), the spatial derivatives of Green's functions are 
inevitably required.  Accordingly, numerical solutions are obtained by FDM (Enoki et al. [7]) and 
by FEM (Hamstad et al. [8]).  These solutions, however, need a vector processor for computation 
and are not readily applicable to processing a large amount of AE waves.   Based on the far-filed 
term of P wave, a simplified procedure was developed, which is suitable for a PC-based processor 
and robust in computation.  The procedure is now implemented as SiGMA (Simplified Green's 
functions for Moment tensor Analysis) code (Ohtsu [4]). 



By taking into account only the far field term of Green’s functions in an infinite space, the 
displacement Ui(x,t) of P wave motion is obtained from eqn (1), 

 
     Ui(x,t) = -1/(4πρvp

3) rirprq/R dS(t)/dt Mpq.                                      (8)                     
 
Here ρ is the density of the material and vp is P-wave velocity.  R is the distance between the 
source y and the observation point x, of which direction cosine is r = (r1, r2, r3).  Considering the 
effect of reflection at the surface and neglecting the source-time function, amplitude A(x) of the 
first motion is represented, 
 
     A(x) = Cs Ref(t,r)/R rpMpqrq                                            (9) 
 
where Cs is the calibration coefficient including material constants in eqn (8).    t is the direction 
of the sensor sensitivity.   Ref(t,r) is the reflection coefficient at the observation location x.  
Since the moment tensor is symmetric, the number of independent unknowns Mpq to be solved is 
six.   Thus, multi-channel observation of the first motions at more than six channels is required 
to determine the moment tensor components. 

From AE waveform in Figure 1, two parameters of the arrival time (P1) and the amplitude 
of the first motion (P2) are determined.  In the source location procedure, source location y is 
determined from these arrival time differences.  Then, distance R and its direction vector r are 
determined.  The amplitudes of the first motions at more than 6 channels are substituted into eqn 
9, and the components of the moment tensor are determined.   Since SiGMA code requires only 
relative values of the moment tensor components, the relative calibration of AE sensors is 
sufficient enough.   Then, the classification of a crack is performed by the eigenvalue analysis  
of the moment tensor.  Setting the ratio of the maximum shear contribution as X, three 
eigenvalues for the shear crack become X, 0, -X.   Likewise, the ratio of the maximum deviatoric 
tensile component is set as Y and the isotropic tensile as Z.   It is reasonably assumed that the 
principal axes of the shear crack is identical to those of the tensile crack.   Then, the  
eigenvalues of the moment tensor for a general case are represented by the combination of the 
shear crack and the tensile crack.  Thus, the eigenvalues are normalized and decomposed,    

                                                                                   
                                                 1.0 =  X +  Y  + Z, 
     the intermediate eigenvalue/the maximum eigenvalue    =   0  - Y/2 + Z,       (10)                      
     the minimum eigenvalue/the maximum eigenvalue      =  -X  - Y/2 + Z. 
 
Here X, Y, and Z denote the shear ratio, the deviatoric tensile ratio, and the isotropic tensile ratio, 
respectively.  In SiGMA code, AE sources of which the shear ratios are less than 40% are 
classified into tensile cracks.    The sources of X > 60% are classified into shear cracks.  In 
between 40% and 60%, cracks are referred to as mixed mode.     
 

4  MOMENT TENSOR AND MIXED-MODE CRACKING 
Erdgan and Sih [9] proposed the maximum circumferential stress criterion for the mixed-mode 
crack extension.  As given in Figure 2, the direction of crack extension to a pre-existing crack is 
determined as the direction of the maximum circumferential stress, 
 

KIsinθ+ KII(3cosθ – 1) = 0.                                                (11) 
 



 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: AE waveform. 
                                           Figure 2: Crack extension from a pre-crack. 
 
 
Where KI and KII are the stress intensity factors of mode I and mode II, respectively.  Initiation of 
the crack is governed by, 

 
cosθ/2[KIcos2θ/2 – 3/2 KIIsinθ] = KIC.                                  (12) 

 
Here KIC is the critical stress intensity factor.   From eqns (11) and (12), normalized stress 
intensity factors KI* = KI/KIC and KII* = KII/KIC are derived as, 
 

KI* = (3cosθ – 1)/[cosθ/2 (cosθ + 1)], and KII* = -sinθ/[cosθ/2 (cosθ + 1)]           (13) 
 
In the eigenvalue analysis, three eigenvectors are also determined, and then the vectors l and n, 
which are interchangeable, are recovered.  Three eigenvectors e1, e2, and e3 are obtained as, 
 

                            e1 = l + n 
                                e2 = l x n                                    (14) 
                                e3 = l – n.    
 
Here x denotes the vector product.  From these relations, the two vectors l and n associated with 
the orientation of a crack can be recovered.  According to Figure 2, cosθ = n0・n1, and n1 is 
identical to vector n in eqn (14).   Consequently, normalized stress intensity factors in eqn (13) 
can be determined experimentally from SiGMA analysis (Ohtsu et al. [10]). 
 

4  MICROCRAKING PROCESS IN FRACTURE PROCESS ZONE 
In a three-point bending test of an off-centered-notched concrete beam, SiGMA analysis was 
performed.  Results are given in Figure 3.  The tensile crack is indicated by arrow symbol, while 
the shear crack is denoted by cross symbol.   The directions of two vectors l and n are shown in 
their directions.  It is found that both types of tensile cracks and shear cracks are observed in the 
fracture process zone ahead of the notch.   Then, damage evolution was estimated by eqn (7).  It 
is realized that the evolution process is fairly gradual, nucleating all types of tensile, shear and 
mixed-mode cracks.  

To investigate the microcracking process, analysis of the two-domain boundary element  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Results of SiGMA analysis.        Figure 4: Evolution of damage in the process zone.  
 

 
method (BEM) was performed.  Crack traces observed in the test and the analysis are compared 
in Figure 5.   It is found that the crack trace is reasonably simulated by BEM.  

Normalized stress intensity factors (SIF) are then calculated from results of SiGMA 
analysis and are shown in Figure 6.   These are plotted against AE hit number.   In the 
beginning stage of microcraking process, KI* is dominant.  Then, KII*-dominant cracks are 
observed in the final stage. In order to confirm this result, normalized SIFs were determined from  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

Figure 5: Crack traces observed in the test and analyzed by BEM. 



BEM analysis.   Results are shown in Figure 7.   Under crack extension, KI* decreses and KII* 
increases.  Thus, the tendency observed in SiGMA analysis is demonstrated.  It is concluded 
that the moment tensor analysis is very promising to quantitatively identify microcracking 
processes in the fracture process zone of concrete.  
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
Figure 6: Normalized SIF by SiGMA analysis.      Figure 7: Normalized SIF by BEM analysis. 
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