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ABSTRACT 
A finite element to capture strong discontinuities in fracture simulations is analyzed. The element belongs to 
the family of symmetric (variationally consistent) elementally enriched finite elements with embedded 
discontinuities and provides a kinematically optimal description of the strain field. The original element, by 
Lofti and Shing, is modified to remove the typical failure to pass the patch test. The variational format is set 
in a rate form so that the resulting formulation is made incremental along the time-like parameter, instead of 
in total form. As a result, elemental constant stress solutions can be fulfilled in elastic regimes and partially 
(time-step size dependent) satisfied in the fracture regimes. The resulting element is then expected to increase 
robustness in comparison with unsymmetrical elements of the same family and not to exhibit stress-locking. 
The element is implemented in the context of the Continuum Strong Discontinuity Approach (CSDA) using 
an isotropic continuum damage model and its performance is checked through the three-dimensional 
numerical simulation of the classical splitting test in fracture mechanics of concrete.  

1  INTRODUCTION 
Finite elements with embedded discontinuities have been extensively considered for purposes of 
modeling material fracture. They are based on the addition, to standard finite elements, of 
discontinuous displacement modes enriching their capability of capturing displacement jumps that 
characterize cracks or fractures (strong discontinuities). Two families can be clearly distinguished 
in the literature: 1) Finite elements with elemental enrichment i.e.: the support of the enriching 
modes is the element domain; the resulting additional degrees of freedom are attached to the 
elements crossed by the discontinuity path and they can be condensed at elemental level (Oliver, et 
al.[1]) and 2) Finite elements with nodal enrichment i.e.: the support of the enriching mode is the 
set of elements sharing the same node; the resulting additional degrees of freedom are attached to 
those nodes belonging to any element crossed by the discontinuity path and they belong to the 
general families of partition of unity methods or X-FEM methods (Moës, et al.[2]).  Advantages 
and disadvantages can be found in both families. Nodal enrichment seems to lead to more stable 
formulations whereas elemental enrichment allows much smaller computational costs and easier 
implementations. This paper is devoted to a particular version of an elementally enriched finite 
element whose original development was presented in Lofti and Shing[3]. This element has been 
barely used due to a fundamental drawback: it fails to pas the path test for elementally constant 
stress fields: i.e.: in elastic regimes the incompatible modes activate, this affecting the original 
accuracy of the element. On the other hand, it exhibits very interesting features: 1) its elemental 
enrichment allows elemental condensation of the discontinuous modes, 2) due to its symmetric 
character, it is expected to exhibit a great robustness and c) since the kinematics allows rigid body 
motions at both sides of the element, it is expected not to lock. In the present work an incremental 
version of that element is presented. The essential difference with the original one is the 
incremental (in time) derivation and implementation of the formulation, which results into the 
exact fulfillment of the patch test in the elastic regimes and the approximate (time step size 
dependent) fulfillment in the failure regime.  



1.1Unsymmetric kinematically and statically consistent formulation  

Let us consider the rate from of the B.V.P of a solid, Ω  with boundary Ω∂  and outward normal 
ν , experiencing a strong discontinuity of the displacement field ),( txu , in a failure surface S  
with normal n (see Figure 1), in the time interval of interest [ ]T,0 : 
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Let us now consider a finite element discretization of typical size h  on Ω . The finite 
dimensional space of the discretized displacements is described by:  
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Figure 1: Strong discontinuity kinematics. 

where )(e
S

M  is the so called unit ramp function Oliver, et al.[1], )(tiu  stands for displacement at 
the regular nodes, i , and eβ  are the elemental additional degrees of freedom representing the 
displacement jumps at those elements, e , crossed by S .  For computational purposes the Dirac�s 



delta function )() xe
Sδ , emerging in equation (2) from the differentiation of the step function 

)(e
SH , is regularized in terms of a collocation function )()( xe

Sµ on S  and a regularization 
parameter, k , as small as permitted by the computer precision. The strain field ε&  exhibits, as 
usual in the Continuum Strong Discontinuity approach, a regular (bounded) part and s singular 
(unbounded) component. Considering, the following space for the test functions (virtual 
displacements):  
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the variational principle (virtual work principle):  
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defines a symmetric (Galerkin type) formulation which qualifies the element as symmetric 
kinematically consistent (Oliver, et al.[1], Jirasek[4]). 

 

Figure 2: Finite element with elemental enrichment 

1.2 Incremental approach.  

In the context of a quasi-static problem ruled by the time-like parameter t  during a discrete 
number of time steps, intn , of typical length t∆ : 
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the variational principle (4) can be integrated leading to the following non linear problem in 
interval [ ]1, +nn tt : 
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which can be rearranged giving rise to the following set of non linear equations:    
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 The specific (incremental) format of the second set of equations in (7) allows overcoming a 
crucial drawback of the symmetric kinematically optimal finite element with a embedded 
discontinuity: the failure in passing the patch test for elementary piecewise constant stress fields 
(as in elastic solutions). In fact, from the expression of )()( xe

S
M in equation (2) it can be readily 

shown that:  
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unlike what is required for that elastic patch test criterion. As a result, the enriching incompatible 
modes for a given element will activate even before the material failure of that element; this 
substantially affects the accuracy of the element at stages prior to the material failure. However, 
the incremental character of equation (7) reveals that:  
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SΩ nn
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and, therefore, that the patch test criterion tends to be fulfilled with decreasing time steps 
( 0→∆t ). Therefore refinement in the time-like domain leads to the fulfillment of the patch test in 
the space domain. In a subsequent manipulation, equations (7) can be modified as:  
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where )(e
Bt  stands for the time of the onset of  the material failure at element e . This precludes the 

activation of the incompatible discontinuous modes during the elastic regime and returns to the 
element its original accuracy at stages prior to the onset of material failure.  

The algorithmic tangent stiffness of the iterative Newton-Raphson scheme for the nonlinear 
problem (10) at time step 1+n  then reads:  
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Figure 3: Three-dimensional simulation of the splitting test: a) finite element discretization 
(tetrahedra) and deformation pattern, b) displacement contours displaying localization at the 
central row of elements, c) captured cracking surface, d) evolution along time of the cracking (in 
dark) on the central surface and e) vertical force vs. vertical top displacement curve. 



where )(⋅A  stands for the assembling operator. and )()( i⋅δ  stands for the iterative variation of the 
degree of freedom )(⋅  at iteration i . In equation (11) the algorithmic tangent constitutive operator, 

algC , emerges from integration of a chosen (material dependent) dissipative continuum 
constitutive model equipped with strain softening: 
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where H  stands for the softening modulus of the model, which is regularized (using the same 
regularization parameter, k , than in the kinematics in equation (2)) in terms of  the intrinsic 
softening modulus, H . This parameter captures the actual fracturing properties of the material in 
terms of the uniaxial strength yσ  and the fracture energy fG . 

From equations (11) it can be readily observed that, due to the symmetric character of the 
chosen formulation, the positive definite character of the stiffness matrix 1

)(i
n+K  of the linearized 

problem can be guaranteed whenever the tangent constitutive operator algC  is positive definite.  
This fact confers to this element additional stability properties that can be conveniently exploited 
for numerical simulations. 

2  REPRESENTATIVE SIMULATION 

2.1 Three dimensional simulation of the cylindrical splitting test. 

The classical splitting test in fracture mechanics of concrete is modeled using the finite element 
described above. The mechanical behavior of concrete is captured using an isotropic continuum 
damage model, which is made sensitive only to tensile damage (Oliver, et al.[5]). Although 
standard material properties of concrete have been taken, the simulation is essentially qualitative 
and attempts to show that 3D simulations can be performed in small computers (PC�s) in reduced 
computational times (less than one hour) as well as displaying some typical information that can 
be obtained in the analysis (see Figure 3).  
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