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ABSTRACT

Analyses of crack growth under cyclic loading conditions are discussed where plastic flow arises from the motion of
large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive rela-
tion. The formulation is the same as used to analyse crack growth under monotonic loading conditions, differing only
in the remote loading being a cyclic function of time. Fatigue, i.e. crack growth in cyclic loading at a driving force
for which the crack would have arrested under monotonic loading, emerges in the simulations as a consequence of the
evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris
law behaviour, striations, the accelerated growth of short cracks and the scaling with material properties are outcomes
of the calculations. Results for single crystals and polycrystals will be discussed.

1 INTRODUCTION

Fatigue crack growth occurs even when the driving force for crack growth is much smaller than what is needed for
the same crack to grow under monotonic loading conditions. Dissipative mechanisms are key for fatigue. As a con-
sequence, both the plastic flow mechanism and the process of material separation play important roles in determining
the fatigue behavior.

Consider a cracked solid subject to loading corresponding to a stress intensity cycling between Kmin and Kmax.
Fatigue crack growth occurs even when Kmax is much smaller than the value of K needed for the same crack to grow
under monotonic loading conditions. Typically, there is a threshold value of ∆KI = Kmax −Kmin below which cracks
do not grow at a detectable rate. Above this threshold value, in the regime where the amount of crack growth per cycle,
da/dN, is on the order of a few lattice spacings, there is a steep increase in da/dN with ∆KI. For larger values of ∆KI,
the increase in da/dN becomes less steep and the Paris law regime [1] is entered where da/dN ∝ (∆KI)

m (c.f. [2]).
Dislocations in crystalline solids play a dual role in the fracture process under monotonic loading, as noted by

Cleveringa et al. [3]. On the one hand, plastic flow caused by the motion of dislocations delays crack initiation and
increases the resistance to crack growth. On the other hand, it is the local stress concentrations associated with discrete
dislocations in the vicinity of the crack tip that leads to stress levels of the magnitude of the cohesive strength, causing
the crack to propagate. This dual role is key for fatigue in crystalline metals – the dissipation from dislocation motion
provides the irreversibility, while the high stresses associated with the dislocation structures that form near the crack
tip precipitate crack growth.

A series of analyses of crack growth in single crystals under cyclic loading conditions have been carried out in
Deshpande et al. [4, 5, 6, 7]. Results for polycrstals are presented in Balint et al. [8]. Plastic flow arises from the
motion of large numbers of discrete dislocations, which are treated as singularities in an isotropic elastic solid. The
material model is independent of the presence of a crack. The fracture properties of the material are embedded in
a cohesive surface constitutive relation [9] so that crack initiation and crack growth are driven by stress as well as
deformation. A key aspect of the formulation is that the plastic stress-strain response and the evolution of the dislo-
cation structure, as well as crack initiation and growth are outcomes of the solution of the boundary value problem.



Furthermore, the only distinction between an analysis of monotonic crack growth and fatigue crack growth is that in
fatigue the remote loading is specified to be an oscillating function of time.

2 THEORY

A brief overview of the theoretical framework is presented; background and further descriptions are given in [4, 5, 6, 7]
and references cited therein. Plane-strain conditions are assumed to hold. Initially, the crystal is assumed to be free
of mobile dislocations, but to contain a random distribution of dislocation sources and point obstacles. The rules for
dislocation nucleation and motion are based on those proposed in [10] and use the Peach-Koehler force as the driving
force. The sources mimic Frank-Read sources and generate a dislocation dipole of opposite signed edge dislocations
when the magnitude of the Peach-Koehler force exceeds a critical value for a specified period of time. The obstacles
pin dislocations and release them once the Peach-Koehler force attains a specified obstacle strength. Annihilation of
two dislocations with opposite Burger’s vectors occurs when they approach each other within a critical annihilation
distance. Dislocation motion is assumed to occur only by glide with no cross slip. The magnitude of the glide velocity
of a dislocation is taken to be linearly related to the Peach-Koehler force. There is no special dislocation nucleation
from the crack tip.

In [4, 5, 7], loading is prescribed in terms of displacements corresponding to the isotropic elastic mode I singular
field remote from the crack tip, while in [6] remote uniaxial tension is imposed. There is a single cohesive surface [9]
that lies in front of the initial crack. At each time step, an increment of the remote loading (the mode I stress intensity
factor increment K̇I∆t for small scale yielding) is prescribed. At the current instant, the stress and strain state of the
body is known, and the Peach-Koehler forces on all dislocations can be calculated. On the basis of these forces the
dislocation structure is updated, which involves the motion of dislocations, the generation of new dislocations, their
mutual annihilation, their pinning at obstacles, and their exit into the open crack. After this, the new stress and strain
state can be determined. The field quantities, i.e. the displacement ui, the strain εi j and the stress σi j are determined
using superposition [11].

Both reversible and irreversible cohesive traction-displacement relations are used. As the cohesive surface ahead
of the crack separates, the magnitude of the traction increases, reaches a maximum and then approaches zero with
increasing separation. In a vacuum, there is no oxidation of the newly formed surface and it is expected that this
relation is followed in a reversible manner. When the newly formed surfaces oxidize, the cohesive relation will not
be followed in a reversible manner. The effect of the formation of the oxide layer and the subsequent surface contact
during unloading is modeled by specifying unloading from and reloading towards the monotonic cohesive law to occur
according to a linear incremental unloading relation.

A reference stress intensity factor K0 is introduced that provides a convenient normalization for the imposed stress
intensity factor. It is defined in terms of the work of separation of the cohesive surface, φn, by

K0 =

√

Eφn

1−ν2 , (1)

where E and ν are the Young’s modulus and Poisson’s ratio of the material. Crack growth in an elastic solid with the
given cohesive properties takes place at KI/K0 = 1.

3 RESULTS

In the small scale yielding calculations in [4, 5, 7], the applied stress intensity is varied between Kmin and Kmax with a
rather high loading rate to shorten the computation time. Fatigue threshold results from [4] are summarized in Fig. 1.
Crack growth under cyclic loading occurs if and only if (i) the cyclic amplitude ∆KI exceeds a critical value ∆K∗

th, and
(ii) the maximum stress intensity Kmax exceeds a critical value K∗

max. With a reversible cohesive consitutive relation,
which models conditions in a vacuum, this can be rationalized as follows: For sufficiently low Kmax, no dislocations
are generated and the system is elastic. Therefore, since as discussed in [4] some irreversibility is required for fatigue
to occur, with a reversible cohesive law, Kmax must exceed some minimum Kmax denoted by K∗

max. For Kmax >> K∗

max,
interactions within the now dense dislocation structure act to retard dislocation motion. Accordingly, a minimum



Figure 1: Discrete dislocation predictions for the variation of ∆Kth with load ratio, R [4].

cyclic stress intensity factor range ∆KI is needed to induce dislocation motion during unloading and reloading. Thus,
in this regime, a critical ∆K∗

th is needed. For an irreversible cohesive relation, which models conditions in an oxidizing
environment, contact plays an important role [4].

Figure 2: The cyclic crack growth rate da/dN versus ∆KI/K0 and ∆Keff
I /K0 for an interface crack [5].

The form of the log(da/dN) versus log(∆KI) curve seen experimentally, with a threshold and a Paris law regime,
is captured in Fig. 2. The effective stress intensity range ∆Keff responsible for crack growth is defined by Kmax −Kop

where Kop is the stress intensity factor at which the crack faces first separate at the current location of the crack upon
reloading. The effect of crack closure is more pronounced at the lower values of ∆KI so that ∆Keff

th is much less than
∆Kth.

The results of fatigue threshold calculations carried out in [6] for geometrically similar edge cracked specimens
are shown in Fig. 3 which are identified by the edge crack length, a. For crack lengths less than 300µm, the deviation
from ∆K-governed fatigue increases with decreasing crack size, with the fatigue threshold for smaller cracks tending
to be ∆σ rather than ∆K-governed. Thus, crack growth under cyclic loading conditions occurs even when Kmax is less
than K0 which is the stress intensity at which the crack would grow in an elastic solid.

At least in the near-threshold and Paris law regimes, fatigue crack growth rates are relatively independent of the
yield strength of the material but scale with the elastic modulus. This rather surprising observation has been borne
out in experimental studies on a variety of metallic alloys. Results for ∆Keff

th from [7] are shown in Fig. 4. Consistent
with experimental data, the calculations show that ∆Keff

th /E is rather independent of the normalized strength σY/E



Figure 3: The fatigue threshold, ∆σth/σY, versus crack length a (corresponding values of σmax/σY are shown on the
right axis) [6].
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Figure 4: Discrete dislocation predictions showing that similar to experiments, ∆Keff
th is relatively independent of the

yield strength σY and scales approximately linearly with Young’s modulus, E [7].

over approximately a decade. gThe results in [7] show that the observed relative lack of dependence of the fatigue
threshold in ductile metals on yield strength emerges from a cohesive fracture model with the stress concentration
arising from near crack tip organized dislocation structures.

Results from Balint et al. [8] for polycrystals will also be discussed.
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