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ABSTRACT

We present the results of a numerical analysis of ceramics under dynamic compressive loading
conditions. The analysis is performed at the mesoscale level using a grain-based finite element
scheme that accounts for the granular microstructure of the material. An explicit
cohesive/volumetric finite element scheme is used to simulate the constitutive and failure response
of the ceramic specimen subjected to uniform or impact-induced compressive loading. In this
analysis, failure is assumed to be of intergranular nature, i.e., the cohesive elements are placed
along the grain boundaries. A rate-independent, damage-dependent cohesive failure model is used
to characterize the progressive failure of the cohesive surfaces. Coupling between normal and
shear failure is achieved by expressing the normal and tangential components of the cohesive
traction vector in terms of the L2 norm of the non-dimensionalized displacement jump vector.
Contact between the fracture surfaces and between the fragments is captured through a
combination of a cohesive-based and minimization-based contact enforcement schemes. The
damage evolution during the fragmentation process is characterized in terms of two different and
complementary damage parameters: the first one denotes the appearance and propagation of the
distributed damage (or micro-cracks) as cohesive surfaces progressively fail under the effect of the
dynamic loading conditions; the second one characterizes the coalescence of the micro-cracks and
the creation of fragments. Special emphasis is placed in this paper on the analysis of the frictional
contact effect on the initiation, propagation and final extent of the fragmentation process. A
detailed parametric analysis is performed to study how the value of the friction coefficient affects
the energy absorption process associated with the fragmentation event under various strain rate
levels and for different grain sizes.

1  INTRODUCTION

Most of the existing theoretical and numerical analyses of fragmentation of ceramic materials rely
on continuum homogenized properties and focus on the tensile loading case (Grady [1], Drugan
[2] and Miller et al. [3]). The objective of the present study is to investigate numerically the
evolution of damage in a ceramic specimen subjected to a uniform initial state of high strain rate
compressive loading, and to perform this analysis at the mesoscale level, i.e., by taking into
account the granular microstructure of the material. Related studies on the topic can be found in
the finite element investigations conducted by Espinosa et al. [4] and by Zavattieri and Espinosa
[5]. This paper constitutes an extension to the compressive regime of a recent study performed by
the authors on the mesoscale simulations of ceramics subjected to dynamic tensile conditions
(Maiti et al. [6]). Although it relies on similar numerical tools and assumptions, the analysis
summarized hereafter presents a major difference with the tensile case: under compressive loads,
the failure process is quite different and involves a mode change to a shear-dominated failure.
Therefore, the frictional contact taking place, first, between the surfaces of the micro-cracks and,
then, between the fragments is expected to play an important role in the evolution and final extent
of damage. The frictional effect on the fragmentation process constitutes the main topic of this
paper, which starts with a summary of the numerical scheme and a description of the problem
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solved (Section 2), then presents the key features of the fragmentation process and the results of a
parametric study of the effects of the friction coefficient on the damage evolution (Section 3).

2  PROBLEM DESCRIPTION AND NUMERICAL SCHEME
The problem to be investigated hereafter is presented in Figure 1. It consists of a thin ceramic
specimen of length H and width W=H/10 composed of a large number of grains and subjected to
an uniform state of uniaxial compression applied through the following initial velocity field:
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where ˙ ε o denotes the initial strain rate, and the following velocity boundary conditions along the
top and bottom edges of the domain:

  
vx x,

±H
2

, t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0,      vy x,

±H
2

, t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = m ˙ ε o

H

2
,      −

W

2
≤ x ≤

W

2
 and t > 0 . (2)

The left and right edges are traction free. As illustrated below, the presence of traction-free
conditions along the sides of the specimen play an important role in the evolution and final extent
of damage. Future studies will focus on the effect of lateral confinement. Various grain sizes are
considered, with an average grain size dmean  ranging from 1 to 100 µm.

The three key assumptions behind the analysis presented hereafter are 1) the analysis is
performed in 2-D under plane strain conditions; 2) the failure takes place in an intergranular
fashion, i.e., we assume that the grain boundaries are much weaker than the individual grains; and
3) the constitutive response of the grains is assumed to be linearly elastic and isotropic. The
domain is discretized with a combination of volumetric and cohesive elements (Maiti and
Geubelle, [7]). 3-noded constant strain triangular volumetric elements are used to capture the bulk
constitutive response of individual grains, while 4-noded interfacial (cohesive) elements are placed
along the grain boundaries. The response of the cohesive elements is described by a mixed-mode,
rate-independent, damage-dependent bilinear cohesive failure law between the normal and

                
Figure 1 Problem geometry (left) and typical grain size distribution (right), compared with the
log-normal (dashed) and generalized Louat (solid curve) distributions. d denotes the grain size.
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tangential components of the cohesive traction vector T = Tn ,Tt( )  and the corresponding

displacement jump vector ∆ = ∆n ,∆ t( ) :

Tn =
S
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where σ max  and τ max  respectively denote the tensile and shear strength of the grain boundaries,
∆nc  and ∆ tc  are the critical values of the normal and tangential displacement jumps across the
cohesive surfaces, and S is the monotonically decreasing damage parameter related to the L2 norm
of the normalized displacement jump vector ˜ ∆ = ∆n /∆nc ,∆ t /∆ tc( ) :

S = 1− ˜ ∆ , (4)

with a = a  if a ≥ 0 and = 0 otherwise. In eqn (3), Sinit  denotes the initial value of S chosen

close to unity (typically 0.98).
Details on the numerical scheme can be found in (Maiti et al. [6]). For completeness, let us

indicate here that it involves a nonlinear kinematics description of the motion to account for the
possible large rotations of fragments during the fragmentation process. A frictional cohesive
contact algorithm incorporated in the cohesive failure law (3) is used to capture the contact
between the surfaces of the micro-cracks detection during the initial phase of the failure process. It
is followed by a more general two-step non-smooth contact scheme to model the inter-fragment
contact, once large relative motion between initially adjacent grains has taken place. Finally, the
numerical scheme relies on an explicit time stepping scheme to capture the complex dynamic
fracture process in the specimen.

To quantify the evolution of the damage process throughout the fragmentation event, we use
two complementary damage parameters. The first one, referred to as the damage index (DI), is
defined as the relative proportion of cohesive elements that have failed and is a measure of the
distributed damage in the specimen. The second one, referred to as λ , corresponds to the total
number of fragments divided by the total area of the specimen, i.e., is the number of fragment per
unit area (in mm−2 ). This second parameter denotes the creation of individual fragments
associated with the coalescence of the distributed microcracks.

3  DAMAGE EVOLUTION

In all the simulations presented hereafter, the normal and shear failure strength values are
σ max = τ max = 1 GPa , the mode I and mode II fracture toughnesses are also assumed to be equal

Figure 2 : Effect of the friction coefficient on the evolution of the damage parameter DI (left) and
on the λ  vs. DI  curves (right) for a specimen with a 10 µm average grain size.
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Gc = σ max∆nc / 2 = τ max∆ tc / 2 = 69.5 J /m2 , and the average grain size is 10 µm . The ceramic
specimen is made of alumina, with a Young’s modulus E = 400 GPa , a Poisson’s ratio ν = 0.27
and a density ρ = 3800 kg /m3 . Figure 2 presents the effect of the friction coefficient µ  on the
evolution of damage index DI. While all curves present a similar trend, some notable differences
are observed. Firstly, the friction coefficient affects the failure initiation time, and therefore the
amount of energy stored in the grains and available for fragmentation. The final damage (i.e., the
final value of DI) is therefore more important for high values of µ , but this dependence on the
friction coefficient is clearly nonlinear: while no noticeable changes are observed for 0 ≤ µ ≤ 0.3,
substantial changes are observed for the two largest values of µ  ( µ = 0.4 and 0.5). There appears
to be also a change in the rising part of the DI vs. time curves for these two higher values of µ ,
with a more progressive increase that that observed for the lower values of µ . This transition is
also apparent in the DI vs. λ  curves, which relate distributed micro-cracking to the formation of
discrete fragments. In all cases, substantial micro-cracking must take place before the formation of
fragments. However, for low values of the friction coefficient, all curves seem to overlap
indicating a similar fragmentation pattern. For µ = 0.4 and 0.5, fragmentation appears to take
place for higher values of DI, and the final number of fragments is much higher.

To understand this transition process, we present in Figure 3 three snapshots of the damage
process in the specimen obtained for µ = 0 (Fig. 3a-c) and µ = 0.5 (Fig. 3d-f). Inn each case, the
first two figures present the damage distribution plotted on the undeformed configuration for
similar values of DI, while the third one shows the final deformed shape of the specimen. In both

(a) (b) (c) (d) (e) (f)
Figure 3. Effect of the friction coefficient µ  on the evolution of the damage process. (a-c) :
µ = 0, (d-f) : µ = 0.5. Fig. (a) and (d) : DI = 0.10 . Fig. (b) and (e) : DI = 0.27 . Fig. (c) and

(d) show the dinal damage on the deformed specimen configuration.
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cases, the failure mode conversion to shear-dominated failure along inclined cohesive surfaces is
clearly apparent. However, while the damage seems to be more distributed for the case µ = 0, it
tends to be more localized in bands in the case µ = 0.5. The fragment size is also observed to be
much smaller for the higher value of the friction coefficient, although some very large fragments
are present due to the presence of localized failure bands.

The difference between the two failure modes is also visible in the resulting average stress-
strain curves (Figure 4). The average stress is computed by monitoring the vertical reaction along
the top and bottom edges of the domain and diving these by the domain width W. Due to inertial
effects, the stress values extracted from the top and bottom vertical reactions are slightly different,
although the general shape of the stress-strain curves is very similar. In all cases, the curve is
initially linear, reaches a maximum, and then follows a progressive downward trend associated
with compressive resistance of the sliding fragments. The additional strength due to frictional
contact between the fracture surfaces is clearly visible, with an increase in strength exceeding 80%
between µ = 0 and µ = 0.5. This effect is expected to be reinforced in the presence of lateral
confinement, which constitutes the main topic of the current phase of this research project.

Figure 4 : Effect of the friction coefficient µ  on the computed stress-strain
relation. The solid and dashed curves respectively correspond to the values

obtained from vertical reactions along the top and bottom edges.
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