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ABSTRACT

One considers a planar tunnel-crack with a slightly wavy front in an infinite body, loaded in mode
[T+III through uniform remote shear stresses, such as a geophysical fault. The distribution of stress
intensity factors along the perturbed front is determined using Bueckner-Rice’s weight function theory.
From there, one addresses the following bifurcation and stability problems: (i) is there a non-rectilinear
configuration of the front for which the energy release rate is uniform along that front? (ii) is the
rectilinear configuration of the front stable versus small coplanar perturbations? The answer to question
(i) is positive. The “critical”, bifurcated configuration is sinusoidal; both its wavelength and the “phase
difference” between the fore and rear parts of the crack front depend upon the ratio of the initial (prior
to perturbation of the front) mode IT and III stress intensity factors. The answer to question (ii) depends
upon the wavelength of the perturbation envisaged; stability prevails for wavelengths smaller than the
critical one and instability for larger ones. This conclusion is similar to those arrived at by Gao and
Rice and the authors for analogous problems.
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INTRODUCTION

Consider a plane crack with arbitrary contour F in an arbitrary body (2. Slightly perturb the crack
front, within the crack plane, by an amount da(s), where s denotes the curvilinear distance along F.
Then the variations 6 K,(s) (aw = I, 11, 111) of the stress intensity factors (SIF) are given, to first order
in the perturbation, by the following formula, which was first established by Nazarov [1] and Rice [2] in
situations of pure mode I, and later extended by Leblond et al. [3] to arbitrary mixed mode conditions:

(5Ka(5) = [5Ka(5)]6a(s’)56a(s) + NO"B(O)K’B(S)%(S)
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where Einstein’s implicit summation convention is employed for the index g = I, I11,II1. In this equa-
tion, the Ks(s) are the initial (prior to perturbation of the crack front) SIF; [0 K (8)]54(5)=sa(s) denotes
the value of 0K, (s) for a uniform crack advance equal to da(s) (da(s") = da(s),Vs'); the NQBEO) are the
components of a universal (valid in all circumstances) operator which has been calculated by Gao and
Rice [4]; and finally the Z,5(€2; s, s") are the components of an operator which depends upon (in addition
to s and s') the entire geometry of the body and the crack considered, and diverges like (s’ — s)™2 for
s" — s, so that the integral in Eqn. 1 makes sense as a Cauchy principal value (PV).

Equation 1 was applied by Leblond et al. [5] to the study of a planar tunnel-crack with a slightly wavy
front in an infinite body, loaded in pure mode I through some uniform remote tensile stress. Using an
original method based on the work of Rice [2], these authors first evaluated the geometry-dependent
operator component Z; (€2 s, s") for the configuration envisaged. Then they studied problems of con-
figurational bifurcation and stability of the crack front during propagation. The bifurcation problem
is the following one. Does there exist, in addition to the trivial, rectilinear configuration of both parts



of the crack front, some non-trivial, curved configuration for which the energy release rate is uniform
along that front in spite of its curvature? The answer was shown to be “yes”; the “critical”, bifurcated
configuration was symmetric with respect to the middle axis of the tunnel-crack and sinusoidal, its
wavelength being a characteristic multiple of the crack width. The stability issue was as follows: if both
parts of the crack front are slightly perturbed within the crack plane, will the perturbation decay or
increase as propagation proceeds? It was shown that stability prevails for sinusoidal perturbations of
wavelength smaller than that of the critical perturbation, and instability for wavelengths larger than it.
This finding was compatible with the conclusions of Rice [6] and Gao and Rice [7, 8] concerning other
types of cracks loaded in mode 1.

The aim of this paper is to consider the same problem, but for a shear (mode II+III) loading. Prop-
agation will still be assumed to be coplanar; this is reasonable provided that the crack is channeled
along a planar surface of low fracture resistance, which can be the case for instance for a geological
fault. Also, propagation will be considered to be governed by the (local) energy release rate, the critical
value of which will be assumed to be independent of the ratio of the mode II and III SIF. Again, this is
reasonable (Rice, private communication) for coplanar propagation along a weak surface, since energy
dissipation occurs through the same physical mechanisms (shear and friction) in both modes II and
III. It will be shown that there again exists a critical, bifurcated configuration of the front. Again, this
configuration is sinusoidal and its wavelength is a multiple of the width of the crack, but this wave-
length now depends upon the ratio of the mode II and III initial (prior to perturbation of the front)
SIF. Also, it is symmetric with respect to the middle axis of the crack only for initial conditions of
pure mode IT or pure mode III; for mixed mode II+III conditions, there is a “phase difference” between
the bifurcated configurations of the fore and rear parts of the crack front. The stability issue will be
addressed only in the case where the phase difference between the perturbations of both parts of the
front takes some special values. It will be shown that in the most interesting case, stability prevails
only if the wavelength of the perturbation is smaller than the critical one. This conclusion is the same

as in pure mode I (Leblond et al. [5]), and also as in mixed mode for other crack shapes (Gao and Rice
9], Gao [10]).

STRESS INTENSITY FACTORS FOR A PERTURBED TUNNEL-CRACK

Consider now (Figure 1), within an infinite body, a tunnel-crack of half-width a loaded through uniform
remote shear stresses ogy, op5. The orientations of the fore (+) and rear (—) parts of the crack front
being chosen as identical, this loading generates a uniform SIF Ky = 035/ma and opposite SIF K}, =
opeNTa, Kip = —Kj;; on them. Now slightly perturb the fore and rear parts of the crack front,
within the crack plane, by the amounts da(z"), da(z7) respectively. Using then Eqn. 1, the values
of the Nos(0) provided by Gao and Rice [4], “symmetry” properties of the Z,5(€2; s, s') established by
Leblond et al. [3] and elementary symmetry considerations for the crack configuration envisaged, one

gets for the perturbations of the SIF on the fore part of the crack front:
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In these expressions, the f,s3 and g,.s are functions which depend solely upon (in addition to the



argument (2’ — z)/a) Poisson’s ratio v; Jroir, fronrr, 9rnors g ave even, and fryrr, grryrrrs odd.
The values of 6K 7(27), K r(2) are given by the same expressions, with the obvious substitutions
da(zt) — da(z7), da(z"*) — a(2'F), Ki;;, — Kjj;. The functions f,s and gas (o, 3 = I, I1I) can be
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Figure 1: Tunnel-crack with a slightly wavy front loaded in shear

determined in a similar way as the corresponding functions for mode I (Leblond et al. [5]). The method
combines the relation between the Z,5(€2; s, s') and Bueckner’s crack-face weight functions (Leblond et
al. [3]), and Eqn. 1 applied to some special motions of the crack front preserving the shape of the
crack while modifying its size and orientation. It yields integro-differential equations on the f,5 and
Jap, Which are transformed into ordinary differential equations through Fourier transform along the
z—direction, and then integrated numerically for any value of v.

BIFURCATION OF THE STRAIGHT CONFIGURATION OF THE FRONT
Consider a slightly curved configuration of both parts of the crack front defined by
da(z") = a cos(kz) ; da(z7) = a cos(kz + @) (4)

where a, k > 0 and ¢ € [—m, 7) are parameters. Using Eqns. 2 and 3 and Irwin’s formula, one obtains
the following expression of the perturbation of the energy release rate G on the fore part of the crack
front:

1—v?
E
In this expression, F is Young’s modulus and F = F(K;;/Ki,p), G = G(K{;;/Ki1,p), H =

H(K{;;/Kr,p) the quantities given by

6G(zT) =2 gK?I[(F + Gcos ¢ + Hsin g)cos(kz) + (—Gsin ¢ + Hcos ¢)sin(kz)] . (5)
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where the “reduced” wavevector p (> 0) and the functions fag, Jap are defined by
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+00
grr.111(p) = 2/0 grrrrr(u)sin(pu)du .



The expression of 0G(z7) is given by the same formula 5 as 6G(z1) with the substitutions cos(kz) —
cos(kz + @), sin(kz) — —sin(kz + ¢).

For G to be uniform along both parts of the crack front, the terms proportional to cos(kz) and sin(kz)
in the expression of 0G(z"), and those proportional to cos(kz + ¢) and sin(kz + ¢) in the expression of
dG(z~), must be zero. This leads to the following conditions:

F + Gcos ¢ + Hsin ¢ =0 ; tan ¢ = H/G . (8)

Using Eqn. 8, in Eqn. 8;, one gets cos p = —FG/(G* + H?), sin ¢ = —FH/(G* + H?). Use of the
relation cos?y + sin®¢ = 1 then yields
2 2 2 G . H
F*=G"+H" = F::I:\/G2+H2;cosgpz—F;sm@:—F. 9)
For a given ratio K;;;/K;r, 9, is an equation on p the solution of which is the critical reduced wavevector;
Eqns. 93, 9, then define the corresponding critical phase difference between the configurations of the
fore and rear parts of the crack front.
+2
It can be shown that for p =0, F =G =1 (1 + ﬁll((fz”
II
G — 0, H — 0. Therefore, if one chooses the sign + in Eqn. 9, the solution is obviously p = 0,
and it then follows from Eqns. 93, 94 that ¢ = —m, so that by Equs. 4, da(z") = —da(z") = Cst.
This is a trivial bifurcation mode which merely corresponds to some translatory motion of the crack in
the z—direction. On the other hand, if the sign — is selected in Eqn. 9, there is a non-zero solution
p. and a corresponding angle ¢., which define a non-trivial bifurcation mode. It can be shown that
cos p. = —G/F > 0 so that ¢, € (—7/2,7/2).

),HzO,andthatforp—>+oo,F—>—oo,
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Figure 2: Critical reduced wavelength versus the ratio of the initial SIF

For each value of the ratio K;;;/K;r, Eqn. 9 (with the sign —) can be solved numerically, using
the values of the functions f,s, gos determined as sketched in the preceding section. Figures 2 and
3 represent the critical reduced wavelength A\./a = 27/p. and the critical phase difference ¢, of the
bifurcated mode, as functions of this ratio, for v = 0.3. (K};;/Ky; is assumed here to be positive; it is
obvious that if it changes sign, A. remains unchanged while ¢, changes sign). One sees that the critical
wavelength is larger in pure mode III than in pure mode II. Also, the critical phase difference vanishes
in pure mode II and III, that is, the bifurcated configuration becomes symmetric with respect to the
middle axis Oz of the crack in these cases. It is recalled that the bifurcation mode was also found to
be symmetric for a pure mode I loading (Leblond et al. [5]).
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Figure 3: Critical phase difference versus the ratio of the initial SIF

STABILITY OF THE STRAIGHT CONFIGURATION OF THE FRONT

The issue of configurational stability of the crack front is easily dealt with only if the extrema of 6G(z™)
coincide with those of da(z"), and similarly for those of G(z7) and da(z7); then one gets stability if
the maxima of 6G(z") and dG(z7) correspond to the minima of da(z*) and da(z7), and instability if
they correspond to the maxima of da(z*) and da(z7). We thus assume that the terms proportional to
sin(kz) and sin(kz + ¢) in the expressions of 0G(z") and 0G(z~) vanish, i.e. that the phase difference
¢ is given (in terms of K;,;/K;r and p) by Eqn. 8,. Then stability prevails if the cofactors of cos(kz)
and cos(kz + ¢) in the expressions of 0G(z") and dG(z7) are negative:

Stability < F 4+ Gcos ¢ + Hsin ¢ < 0 (with tan ¢ = H/G) . (10)

Let us for instance assume Kj;;/K;; to be positive. Then it can be checked that tan o = H/G > 0 so
that ¢ € [0,7/2) or p € [—m, —7/2). Note that if p = p., p = @, in the first case and ¢ = ¢. — 7 in the
second one.

* The more interesting case corresponds to ¢ € [0,7/2). Then, for p =0, F =G > 0 and H = 0 (see
above) so that ¢ =0 and F' + Gcos ¢ + Hsin ¢ = F + G > 0. On the other hand, for p — +o0,
F — —o00, G — 0, H— 0 (see above) so that F'+ Gcos ¢ + Hsin ¢ ~ F < 0. Finally, for p = p,,
@ = . so that F' 4+ Gcos ¢ + Hsin ¢ = 0. Thus F' 4+ Gcos ¢ + Hsin ¢ is positive for p < p,,
zero for p = p. and negative for p > p. : stability prevails for wavelengths smaller than the critical
value A\, and instability for wavelengths greater than it. This finding is similar to those of Leblond
et al. [5] in pure mode I, and Gao and Rice [9] and Gao [10] for semi-infinite and penny-shaped
cracks in mode IT+III.

*In the less interesting case where ¢ € [—m, —7/2), for p = 0, ¢ = —7 so that F'+ Gcos ¢+ Hsin ¢ =
F —G = 0; for p — 400, F' + Gcos ¢ + Hsin ¢ < 0; finally, for p = p., ¢ = ¢. — 7 so that
F + Gcos o+ Hsin o = F + G*/F + H?/F = —2y/G% + H2 < 0. Thus F + Gcos ¢ + Hsin ¢ is
always negative, and stability prevails for all wavelengths.
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