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ABSTRUCT 
 

In this paper, the constitutive equation of nonlinear damage material is given .The basis equation for 
founding solution of mode III crack is established, using transformation of coordinates .The analytical 
and numerical results are obtained .The shape and the scale of damage zone where the material 
completely fails are determined.  
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INTRODUCTION 

 

The field of stress and strain near tip-crack is an important research problem of fracture mechanics 
because it controls the crack growth. There are many kinds of structures of crack –tip field [1-3]  , that 
depend upon the material nature and the loading condition .All of the existing solutions to the crack tip 
fields are based on the singular analysis, i.e. either stress or strain possesses singularity at the crack tip. 
But the real behavior of materials does not permit the singular, at finite stress and strain the material 
always fails. Therefore, the singular solution is not valid when the crack tip is really approached. In order 
to reveal the true feature of the crack tip fields, we must consider the real character of materials. When 
strain reaches certain critical value, the strength of material will completely vanished, so that the concept 
of damage mechanics mast is introduced [4]. 
 There are continuous models of internal damage parameters, which can be incorporated into crack 
analysis. For instance, Bui and Ehrlachar[5] Proposed a simple model to analysis the dynamic steady state 
propagation of a damage zone in elastic and plastic solids and got exact solutions for the small scale 
damage model in elastic material and for the strip problem, in mode III loading. There was not singularity 
in the solution of stresses and strains. With Krajcinovic’s[6] assume, Popelar and Hoagland[7] discussed 
distribution of damage field of mode    III crack ,where the relation of damage variable and  strain  is 
linearity.� 
 This paper is concerned with an infinite slab containing a semi – infinite crack, which is subjected to the 

anti – plane shear IIIK field at infinity. First, the constitutive equation of nonlinear damage material is 

given, which is that γτ )1( nDG −= , where τ is the effective stress, n is the softening parameter, damage 



factor D , depends on the effective strain, )/( kGD γ= , where G is the shear module, k  is the damage 

module and the γ  is effective strain.. When 1=n , the material is linear damage material6]. Secondly, the 

basis equation is given for founding solution of mode III crack, using transformation of coordinates. 
Finally, the analytical and numerical results are obtained .The shape of damage zone; stress distribution 
and the scale of damage zone are discussed. When 1=n , the result is same as that given by  
C.H.Popela[5]  

 

THE BASIS EQUATION  

The constitutive equation   
The evolvement equation given by Krajcinovic [6] is 

      ( )εσ DE −= 1  

      ( ) KHED εε=                                                                            �1� 

 Where E is Young’s modulus� ( )εH is Heaviside’s function. This constitutive equation describes 

damage process of concrete, rock and brittle materials. We assume that the constitutive equation of 
materials in the uniaxial tension case is 

        ( ) ee DE εσ *1−=    

        ( )n
eK

ED ε=*  nD=                                                                         (2) 

where eσ is effective stress� eε  is effective strain�in the uniaxial tension case, Eq.�2�is 

      ( )nDDK −= 1σ                                                                               �3� 

                  Figure 1� Curve of DK ~σ  

   Curve of DK ~σ (Eq. (3)) is given by Fig.1.When stress reaches extremism�the material is in 

Unstability State, soft and fails .The damage critical value satisfies  that 0=
dD

dσ  , then 
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Figure 2: the relation of n and the damage critical 
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As n increases, cD  increases �the relation of n and the damage critical value is given by Fig.2 

 
The basis equation of problem of Mole III crack 

In anti-plane problem, stresses, yyzxxz ττττ == , �satisfy the equilibrium equation: 
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The strain and displacement, ( )yxWW ,= , are given by 
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The compatibility equation is 
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The constitutive equation: 
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Where γ  is effective shear strain,  ( )2

1
22
yx γγγ +=  and 

         ( )γτ nDG −= 1                                                                                               ( 9 )                                                                                        

Where  ( )γ
K
GD =                                                                                                      

     The boundary conditions are 
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THE BASIS SOLUTION OF MODE III CRACK 

Using transformation of co-ordinates (Fig.3), we can take variable ( yx γγ , ) instead of  (x, y) [8]. 
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The equilibrium equation�5�becomes 
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      The compatibility equation�7�is 
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   Introducing the strain function ( )yx γγψ ,   

         
x

x
γ
ψ

∂
∂

=         
y

y
γ
ψ

∂
∂

=                                                                                �13� 

  Then Eq.�12�is satisfies. Taking note of transformation of co-ordinates, we have express of x and y 
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In the problem of mode III crack, ( )x,γψ  satisfies 
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When cDD < � 0>
γ
τ

d

d �Eq.�15�is elliptic and a well-behaved small-scale yielding solution is attainable. 

Assume that 

          ( ) χψ sinDf=                                                                                                  �16� 

Where ( ) ( )DDDf ϕ=  and ( )Dϕ  satisfies 
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A  is unknown constant. We can obtain solution of Eq.�17�. 
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When 1=n , we have 
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When 2=n , we have 
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When 2,1≠n �we have  13 −≠−nm �i.e. when 2,1≠n �there are not terms of 1−D , we have 
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Where C is unknown constant, and series in Eq. (20) is convergence, when ( )1,0∈D . 

DISCUSSION 

The shape of damage zone� 

With Eq.�14�and�20��we have 
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The damage zone, defined by (21), is a set of circles for cDD <<0 with their centers on x>0 ,y=0. There 

are two unknown constants , A and C, in  solution ,which are determined by boundary condition and the 
damage zone where the material completely fails, respectively. By Eq.�10�, we have� 
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When cDD = �by )()( cc DRDX = � C satisfies� 
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When n=1 ��C = - 4 ,this is same as result in [7]� 



    
  Fields of stresses and strains� 

With Eq. (21�and expression of ψ�we obtain 
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Where       )(/)( DRDX=β  
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 For certain geometry point, ),( θr �by Eq.�24�, ),( Dχ  are determined and the field of strains is given. 

As n  increases� )( cDR   decreases. When ∞→n � 
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If  we take that sK τ= , the yield strength�when ∞→n �the material is elastic�then the radius of 

damage zone is the same as of the plastic radius in the elastic perfectly plastic material[3]. 
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