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ABSTRACT

In this paper, a numerical method for the determination of the mode I stress intensity factor of an
arbitrary plane crack embedded in an in�nite isotropic elastic body, is proposed.
This method is based on the three-dimensional weight-function theory of Bueckner-Rice, that gives the
variation of the stress intensity factor along the crack front arising from some small arbitrary coplanar
perturbation of the front. It is closely linked to previous works of Bower and Ortiz but much simpler
in its numerical implementation.
The main advantage is that only one dimensional integrals along the crack front are involved so that
only the one dimensional meshing of the crack front is needed, and not the 3D meshing of the whole
body as in the �nite-element method.
Applications include the asymptotic behavior of the stress intensity factor along the crack front near
an angular point and the fatigue propagation path of mode I plane cracks undergoing a large number
of loading cycles.

KEYWORDS

Linear elastic fracture mechanics, stress intensity factor, mode I crack, 3-D weight function, 3-D
plane/at crack, perturbation method, angular point, fatigue propagation path.

INTRODUCTION

Let us consider a plane crack with arbitrary contour F , embedded in an in�nite isotropic elastic body
and loaded in pure mode I through some uniform stress �1 applied at in�nity (see �g. 1). The aim
of this paper is to determine the mode I stress intensity factor (SIF) along F . A classical method
would be to use the �nite element method (FEM), but here we propose an alternative method whose
main advantage is to restrict the meshing operations to that of the front instead of the whole body.
It is based on the three-dimensional weight-function theory derived by Gao and Rice : in [7] the half
plane crack is studied, in [4] the penny shaped one and �nally, in [8] the theory for any plane crack is
presented. It was used by Bower and Ortiz [1, 2, 3] to study several problems concerning a half plane
crack. However, the originality of our work lies in the simpli�cation of the numerical implementation
and in the applications studied : the asymptotic behavior of the SIF near an angular point of the front
and some examples of fatigue propagation paths.
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Figure 1: Arbitrary plane tensile crack in an in�nite body under uniform stress �1.

PRINCIPLE OF THE METHOD

Three-dimensional weight-function theory

As the crack advances, under constant loading, by a small distance Æa(M) in the direction perpendicular
to the front F like in �gure 1, Rice [8] has shown that to �rst order in Æa, the SIF at point M 0

0 of the
new front de�ned by ����!
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can be approximated by K(M0) + ÆK(M0) where
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D(M;M0) is the distance between the points M and M0, W (M;M0) is a two-variable function linked
to the weight function of the crack1. The function W along the new crack front can be, itself, updated
by W (M0;M1) = W (M0;M1) + ÆW (M0;M1) where the variation of W is given, also to �rst order in
Æa, by :
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These formulae are legitimate for special normal advances Æ�a(M) and Æ��a(M) that preserve the shape
of the front and such that Æ�a(M0) = Æa(M0), Æ��a(M0) = Æa(M0) and Æ��a(M1) = Æa(M1) so as to
ensure the existence of the Principal Value (PV) integrals. One can always de�ne some combination of
translatory motion, rotation and scaling that veri�es all these conditions.

As the quantities in right-hand side of Eqn. 2 and 3 concern only the front F , this theory allows to
calculate the SIF and function W along the perturbed one F 0 if the SIF and function W are known for
the initial one F .

Determination of the SIF and of the function W

Assume now that the functions K(M) and W (M;M0) are known for one crack shape C and that a
succession of very close to each other, intermediate cracks Fk, k = 0 : : : n, such that F0 = C and
Fn = F , can be constructed. Then by applying Eqn. 2 and 3 successively between F0 and F1, between
F1 and F2, : : : and �nally between Fn�1 and Fn the SIF K = K + ÆK and the function W = W + ÆW
along F1,F2, : : : and �nally Fn = F can be obtained.

1More exactly to the SIF at the point M of F induced by unit point forces exerted on the point M 0 of the crack lips
in the direction �~y, when M 0 approaches M0 (see Rice [8] for the exact de�nition).



NUMERICAL PROCEDURE

In the sequel, we restrict our attention to a bounded plane crack F that can be derived from a penny

shaped one C of center O and radius R for which K(M) = 2�1
q
R=� and W (M;M0) = 1 (see for

instance, Rice [8]), but each crack shape for which the functions K(M) andW (M;M0) are known could
be chosen as starting point (see [1, 2, 3] for the half plane crack).

Meshing

The initial crack front F is meshed with N points Pi, i = 0 : : : N � 1. The N nodes P 0
i of the reference

front C are constructed through intersection of C with the lines (OPi). The segments [P 0
i Pi] are then

cut into n pieces to create n � 1 intermediate meshes Fk, k = 1; n � 1 with nodes P k
j;j=0;N�1. As the
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Figure 2: Intermediate cracks between the reference front C and the �nal one F .

vector
�����!
P k
j P

k+1
j is not in general normal to the front Fk (see �g. 2), the Eqn. 2 and 3 don't give the SIF

at point P k+1
j as a function of its values on nodes P k

i;i=0;N�1 of Fk. Therefore a second set of meshes
Mk

i;i=0;N�1 of Fk, k = 0; n is constructed by projection of the nodes Mk
i of Fk onto the arc of a circle

passing through the 3 successive nodes P k+1
j�1 , P

k+1
j ,P k+1

j+1 , of Fk+1 with, as initialization, M0
i = P 0

i ,
i = 0; N � 1. The stress intensity factor and function W are then computed on the nodes Mk

i;i=0;N�1,
k = 1; n of this set of meshes. If the meshes become too distorted, remeshing is done.

Calculation of the integrals involved

To calculate each ÆK(Mk
i ), the PV part, around Mk

i , is extracted from Eqn. 2 and rewritten in the
form (by taking into account the fact that D(M;Mk

i ) � js(M)� s(Mk
i )j in the neighborhood of Mk
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where a; b are interpolation constants, s(M) some curvilinear abscissa along the crack front. The integral
over the rest of the front is regular and calculated by quadratic interpolation over each interval.
To calculate ÆW (Mk

i ;M
k
j ), a similar procedure is employed. Nevertheless, attention must be paid to

the fact that the PV concerns both points Mk
i and Mk

j .
One should notice that the procedure is less complicated than the one used by Bower and Ortiz [1], but
gives comparable results, as shown below.



SOME EXAMPLES OF SIF COMPUTATION

The elliptical crack

For an elliptic crack with major axis b and minor axis a subjected to some uniform tensile loading �1,
Irwin [6] has shown that :

K(M) =
�1
p
�a

E(k)

 
sin2(�) + �4 cos2(�)

sin2(�) + �2 cos2(�)

!1=4

with E(k) =
Z �=2

0
(1� k2 sin2 x)1=2dx (5)

where � is the polar angle of M , � = a=b, k =
p
1� �2 and E(k) denotes the elliptic integral of the

second kind. The numerical results obtained for di�erent values of � are in good agreement with this
analytical result.
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Figure 3: Error E obtained by di�erent methods.

To compare our results to those of Bower and Ortiz [1], the case � = 1=3 is considered. Figure 3 shows
the value of the error E, de�ned by :

E =

vuut 1

perimeter

Z
F

(Knum(M)�Kexact(M))2

K2
0

dM (6)

as a function of the number of nodes N , a constant maximum step size of 0:005a between the interme-
diate fronts Fk and Fk+1 being used. K0 denotes the uniform SIF along the initial penny-shaped crack
C of radius a. When the advance of the front is given analytically like in the work of Bower and Ortiz,
E is of the same order although our procedure of integration is simpler. However, when the advance
is computed numerically, the error is obviously slightly increased, but reasonable enough to allow us to
study cracks with more complex shapes.

Asymptotic behavior of SIF near an angular point of the front

The stress intensity factor along the front of several \heart shaped cracks", like the ones depicted in
�gure 4(a), with di�erent opening angles � is given in �gure 4(b).
Leblond and Leguillon [5] have shown that near the angular point O of the front, the SIF behaves in
the following manner :

K(M) / js(M)� s(O)j1=2+� when M ! O; (7)

where � depends only on the opening angle � and veri�es � < �1=2 so that the SIF becomes in�nite
at the notch point. The peak in �gure 4(b) is the numerical manifestation of this propriety.
The scalar � can be computed by �tting the behavior 7 with the results, around the corner point
O, of �gure 4(b). The values obtained are given in �gure 5 for several angles �. Errors are due to
the dependence of the results upon the points chosen for �tting and to the numerical errors in the
computation of the SIF. They are all the greater as the shape of the crack is more di�erent from the
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Figure 4: Heart shaped cracks

initial circle C i.e. as � is smaller. Nevertheless, our values are relatively close to the ones obtained by
Leblond and Leguillon [5] by a more precise method in spite of the uncertainties linked to our method.
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Figure 5: Computed values of the exponent �

SOME EXAMPLES OF FATIGUE PROPAGATION PATHS

Let us now consider a bounded plane crack F loaded in pure mode I through some uniform cyclic tensile
stress applied at in�nity. Suppose that the crack propagation rate is given by Paris' law and that during
a few, say nc cycles, the variation of mode I intensity factor �K(M) along the front remains constant
so that :

da(M)

dn
= C(�K(M))� =) Æa(M) = nc:C:(�K(M))� (8)

where C and � are material constants and Æa(M) the normal crack advance after nc cycles at the point
M of the front.
Once the SIF and W are computed for the initial front F as explained above, the propagation path of
this aw can be determined by

1. applying Eqn. 8 to determine the displacement Æa(M) of the front;

2. using Eqn. 2 and 3 to update the SIF and the function W , and Eqn. 1 to obtain the new front;

3. repeat, as many times as required, the two preceding operations.
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Figure 6: Propagation of some cracks for (�1 = 1 Pa, ncC = 0:005 Pa�2, � = 2).

Figure 6 shows, as typical examples, positions of the front during the propagation of initially elliptic,
rectangular and heart shaped cracks each 20nc cycles of loading. It appears that the crack becomes and
remains circular after a certain time. This seems to be a general feature of the fatigue propagation of
bounded mode I cracks embedded in an in�nite body.

CONCLUSION

Since only the meshing of the initial front is needed, the procedure depicted above is an eÆcient tool
for solving problems concerning a at crack subjected to mode I loading. For instance, we have seen
that the asymptotic behavior of the SIF near an angular point of the front and the fatigue propagation
path of bounded cracks over a large distance can easily be computed.
Nevertheless, it would be interesting to extend the method to �nite bodies to broaden the �eld of
applications. But we do not know yet how to take into account boundary e�ects.
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