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ABSTRACT 
 
The propagation behavior of microstructurally small fatigue cracks was numerically simulated on the basis 
of the plasticity-induced crack closure model. The effects of the frictional stress of dislocation motion and 
the strength of the grain boundary blocking on the crack closure behavior were analyzed. Then the 
simulation of the propagation of a crack nucleated in the weakest grain was conducted by assuming that the 
crack growth rate was controlled by the crack-tip opening displacement, ∆CTOD. The grain size, the critical 
value of microscopic stress intensity factor at grain boundary and the frictional stress were given as random 
variables following two-parameter Weibull distributions. When the crack approached adjacent grains with 
higher frictional stresses, ∆CTOD decreased and the crack opening stress increased. The grain boundary and 
the higher frictional stress act as a resistance to crack propagation. When compared at the same stress 
intensity range, ∆CTOD increased with increasing stress ratio. The effect of the stress ratio on the fatigue 
limit was analyzed on the basis of the results of the simulation. The relation between the fatigue limit and the 
value of the applied mean stress is nearly identical to the modified Goodman relation. 
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INTRODUCTION 
 
The propagation behavior of long fatigue cracks is uniquely determined by the stress intensity range, ∆K. On 
the other hand, small fatigue cracks show anomalously high irregular propagation rates when compared with 
long cracks at the same ∆K [1-6]. This fast propagation rate has been ascribed to microstructural effects, 
premature crack closure and macroplasticity [3,5]. The irregular propagation behavior is caused by the 
microstructural inhomogeneity. In our previous study [7,8], a model for crack-tip slip band blocked by a 
grain boundary based on the continuously distributed dislocation theory was proposed. The statistical nature 
of propagation behavior of small cracks could be successfully derived by the Monte Calro simulation. 
However, the effect of the crack closure was not taken into account. 
 
In this study, the propagation behavior of microstructurally small fatigue cracks was numerically simulated. 
The effects of the frictional stress of the adjacent grain and the strength of the neighboring grain boundary on 
the crack closure behavior were analyzed. Then the simulation of the propagation of a crack nucleated in the 
weakest grain was conducted. The effects of the microstructural parameters and the value of the applied 
mean stress on the propagation behavior and on the fatigue limit were investigated.   
 
 
CRACK CLOSURE ANALYSIS 
 
Analytical Model 
The interaction model between grain boundary and slip band ahead of a crack-tip is shown in Fig. 1. The 
isolated crack is located at the center of a grain and the slip band is assumed to spread in the same plane. In 
the figure, Lq-1 is the distance between the (q-1)th grain boundary and the center of the crack. σ fq is the 
frictional stress of the qth grain. When the slip band is blocked by the grain boundary, the stress field near 
the tip of the slip band has a singularity with the following intensity [7]:   
 

                                                        (1) 
 
The microscopic stress intensity factor, Km, increases with crack length. When Km becomes larger than the 
critical value of the strength of the grain boundary, Kmc, the slip band propagates into the adjacent grain as 
shown in Fig. 1 (c). When the crack becomes large, the slip bands spread into several grains (Fig. 1 (d)). 
When the crack-tip and the tip of the slip band are in the jth and the qth grain, respectively, the plastic zone 
size, ω (= c-a), can be calculated by [7] 
 

                       (2) 

 
where σmax is the maximum applied stress. 



                                                                    
Figure 1. Slip band model. 

 
Microstructural Parameters 
Microstructural parameters used in this study are the grain size, d, the critical microscopic stress intensity 
factor, Kmc, and the frictional stress, σ f. Those parameters were given as random variables following 
two-parameter Weibull distributions. The random variables were generated by using their mean value 
(denoted by suffix µ) and a variance (denoted by suffix v). A fatigue crack is assumed to initiate from the 
weakest grain having the largest value of the following strength parameter Γ [9]: 

 
          Γ k = d k ( ∆σ - 2σ fk)                                                     (3) 
 

where ∆σ (=σmax-σmin) is the applied stress range, dk is the grain size. The mean frictional stress, σ fµ, and 
Young’s modulus, E, are assumed to 400 MPa and 206 GPa, respectively. 
 
Crack Propagation  
In our previous study [7,8], we simulated the propagation behavior of microstructurally small fatigue cracks 
without taking into account of crack closure. The results correspond to the propagation of Stage I cracks. In 
this study, cracks are assumed to propagate in a Stage II manner under the influence of crack closure. Fatigue 
crack propagation behavior was simulated to evaluate the development of the plasticity-induced crack 
closure with crack growth by using an analytical closure model proposed by Newman [10]. The initial crack, 
ai, and the plastic zone, ωmax, at the maximum applied stress were divided into 20 and 40 elements, 
respectively. The amount of crack extension was prescribed to be ∆a= 0.002ωmax.   
 
Budiansky et al. [11] analyzed the plasticity induced crack closure of semi-infinite cracks and showed that 
∆CTOD was related to the effective stress intensity range, ∆Keff, as 
 

                                                             (4) 



The threshold value of ∆CTOD is evaluated by Eq. (4). By assuming the threshold value of ∆Keffth as 1, 2 
and 3 MPam1/2, the threshold value of ∆CTOD is calculated to 8.86×10-6, 3.54×10-5 and 7.97×10-5 mm. 
 
RESULTS AND DISCUSSION 
 
Effect of Friction Stress  
Fatigue crack propagation behavior was simulated to investigate the effect of the frictional stress of an 
adjacent grain on crack closure. Both the length of an initial Stage I crack and the distance between the 
crack-tip and the grain boundary were assumed to be 50 µm. Figure 2(a) shows the change of σ op/σ max with 
crack length. The maximum applied stress is 180 MPa. The frictional stress of the first grain, σ f1, is 400 
MPa, and σ f2/σ f1=0.8, 1.0, 1.2 and 2.0 in the second grain. There is no barrier at the grain boundary (Kmc =0 
MPam1/2). The value of σ op/σ max  for σ f2/σ f1>1.0 becomes larger than that for σ2/σ f1= 1.0. When the 
extension of the plastic zone is constrained by the adjacent grain with a higher frictional stress, the crack 
opening stress increases with crack length. Namely, the effective component of the stress range decreases as 
a consequence of the constraint. The crack opening stress takes a local maximal value in the first grain 
before the crack tip reaches the grain boundary. When the crack propagates into the adjacent grain, the crack 
opening stress increases sharply, and takes the maximum value in the second grain. On the other hand, for 
the case of σ f2/σ f1<1.0, the behavior is in contrast with the result obtained for σ f2/σ f1>1.0. The change of 
∆CTOD with crack growth is shown in Fig. 2(b). ∆CTOD first decreases due to the development of the 
residual stretch, then increases until the tip of the plastic zone reaches the grain boundary. For the case of 
σ f2/σ f1>1.0, ∆CTOD begins to decrease, as the plastic zone crosses the grain boundary. When the driving 
force of crack propagation is given by ∆CTOD, the higher frictional stress of the neighboring grain act as a 
resistance of crack propagation. If the threshold value of ∆CTOD is assumed to be 3.54×10-5 mm, the crack 
becomes non-propagating at the crack length of 0.097 mm for the case of σ f2/σ f1=2.0. It is interesting to 
note that ∆CTOD takes a minimum value at the crack length of 0.103 mm in the second grain.  
 

         

         (a). Change of σ op with crack length.            (b) Change of ∆CTOD with crack length. 
                    Figure 2. Effect of frictional stress of adjacent grain. 
 
Statistical Analysis of Crack Propagation 
The same simulation was conducted to investigate the effects of the grain-boundary blocking and the applied 
mean stress on the threshold condition of small cracks.  The frictional stress and the grain size were given 



as random variables. The initial crack length is ai=5 µm. The mean frictional stress and grain size are 400 
MPa and 50 µm, respectively. The variances of those values are (σ f/σ fµ)v=0.2 and dv=50 (µm)2. The mean 
value and the variance of the critical value of the microscopic stress intensity factor are (Kmc /σ f

µ 
(πdµ)1/2)µ=0.4 and (Kmc /σ f

µ (πdµ)1/2)v=0.04, respectively. The relation between ∆CTOD and ∆K is shown in 
Fig. 3(a). The applied stress is σ a/σ fµ=0.5. In the figure, the broken line indicates the relation obtained for 
the constant mean frictional stress and Kmc =0, and has a slope of two in the log-log diagram. The results 
obtained from 30 kinds of random number sequence are plotted. The scatter diminishes as the crack 
propagates and converges to the broken line. This corresponds to the experimental results of propagation 
behavior of small fatigue cracks [6]. When the threshold value of ∆Keffth is assumed to be 1 MPam1/2, the 
threshold value of ∆CTOD becomes 8.86×10-6 mm. In this case, 24 cracks out of thirty are arrested at the 
first grain boundary. The abscissa was subdivided into 20, and the arithmetical averages of ∆CTOD and ∆K 
were calculated within each subdivision. Figure 3(b) shows the relation between the arithmetical average of 
∆CTOD and ∆K. In the figure, the results obtained for the stress ratio of -1.5 and -0.5 were also plotted. The 
dotted lines in the figure are the results obtained for σ fκ=σ fµ and Kmc =0 under each stress ratio. When 
compared at the same ∆K, ∆CTOD increases with increasing stress ratio. Two and twenty eight cracks out of 
thirty are arrested under the stress ratio of -0.5 and -1.5, respectively. The number of arrested cracks 
decreases with stress ratio.  
 
Figure 4 shows the Haigh diagram which is the relation between the stress amplitude and the mean stress at 
the fatigue limit. The fatigue limits are calculated as the fracture probability of 50%. The threshold value are 
given as ∆CTODth= 8.86×10-6, 3.54×10-5 and 7.97×10-5 mm. The fatigue limit decreases linearly with the 
mean stress irrespective of the threshold value. The dot-dash line is the modified Goodman relation obtained 
by assuming σ 

Β/σ f
µ=1.15 [12]. The slope is close to the simulated results.  

 

     

 

 
(a) 30 cracks                           (b) Mean value 
Figure 3. Relation between ∆CTOD and ∆K. 



  

      

 
                                 Figure 4. Haigh diagram. 
 
 
CONCLUSION 
 
The propagation behavior of microstructurally small fatigue cracks was numerically simulated on the basis 
of the plasticity-induced crack closure model.  
(1) When the crack approached grains with higher frictional stresses, ∆CTOD decreased and the crack 
opening stress increased. The grain boundary blocking and higher frictional stress act as a resistance to crack 
propagation.   
(2) The scatters of ∆CTOD diminished as the crack length becomes longer. When compared at the same 
stress intensity range, ∆CTOD increased with stress ratio.  
(3) The relation between the fatigue limit and the applied mean stress is nearly identical to the modified 
Goodman relation.  
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