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ABSTRACT

This paper presents a new method for shape sensitivity analysis of a crack in a homogeneous, isotropic,
and nonlinearly elastic body subject to mode-I loading conditions. The method involves the material
derivative concept of continuum mechanics, domain integral representation of the J-integral, and direct
differentiation. Unlike virtual crack extension techniques, no mesh perturbation is required in the proposed
method. Based on the continuum sensitivities, the first-order reliability method was employed to perform
probabilistic analysis. Numerical examples are presented to illustrate both the sensitivity and reliability
analyses. The maximum difference between the sensitivity of stress-intensity factors calculated using the
proposed method and the finite-difference method is less than four percent. Since all gradients are
calculated analytically, the reliability analysis of cracks can be performed efficiently.
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INTRODUCTION

In probabilistic fracture mechanics (PFM), the derivatives of the J-integral or stress-intensity factors (SIFs)
are often required to predict the probability of fracture initiation and/or instability in cracked structures.
The calculation of these derivatives with respect to load or material parameters, which constitutes size-
sensitivity analysis, is not unduly difficult. However, the evaluation of derivatives with respect to crack
size is a challenging task, since it requires shape sensitivity analysis. Using a brute-force type finite-
difference method to calculate the shape sensitivities is often computationally expensive, because
numerous deterministic finite element analyses may be required for a complete reliability analysis. Hence,
some analytical methods have appeared to predict the sensitivities of SIFs under mode-I loading condition.
For example, finite element methods (FEMs) based on virtual crack extension techniques have been
developed to calculate the first- and second-order derivatives of SIFs [1]. However, these methods
require mesh perturbation – a fundamental requirement of all virtual crack-extension techniques. For
second-order derivatives, the number of elements affected by mesh perturbation surrounding the crack tip
has a significant effect on solution accuracy [1]. Recently, alternative methods based on continuum
sensitivity theory have emerged to obtain derivatives of SIFs for linear-elastic cracked structures [2,3].
No mesh perturbation is necessary in the latter formulation involving continuum shape sensitivity analysis.



However, these methods are valid only for linear-elastic structures. Hence, there is a need to develop
similar sensitivity equations for nonlinear cracked structures.

This paper presents a new method for predicting the first-order sensitivity of the J-integral for a crack in a
nonlinearly elastic structure under mode-I loading conditions. The method involves the material derivative
concept of continuum mechanics, domain integral representation of the J-integral, and direct
differentiation. Based on the proposed sensitivities, the first-order reliability method is employed for
predicting stochastic response and reliability of cracked structures. Several numerical examples are
presented for calculating both the sensitivity of the J-integral and reliability of cracked structures.

SHAPE SENSITIVITY ANALYSIS

The governing variational equation for a nonlinearly elastic structural component with the domain Ω can
also be written as [4]
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where Ti is the ith component of the surface traction, Vi is the ith component of V, ni is the ith component
of unit normal vector n, and Γκ is the curvature of the boundary, and jiji xzz ∂∂=, , jiji xzz ∂∂=, , and
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the material derivative of ψ at Ω is [4]
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evaluate the sensitivity expression of Equation 7, a numerical method is needed to solve Equation 1. In
this study, standard nonlinear FEM was used to solve Equation 1. However, the solution of z� can be
obtained efficiently from Equation 2, since it is actually a linear system. Since the sensitivity equation is
always linear even for nonlinear systems, the continuum shape sensitivity method is more efficient than the
finite-difference method that requires solving at least two nonlinear systems of equations. In this study,
the ABAQUS finite element code [5] was used for all numerical calculations.



THE J-INTEGRAL AND ITS SENSITIVITY

A widely used constitutive equation for J2-deformation theory of plasticity, usually under small-
displacement conditions, is based on the well-known Ramberg-Osgood relation [6], given by
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where ijσ and ijε are stress and strain components, respectively, E is the Young’s modulus, ν is Poisson’s

ratio, 0σ is a reference stress, α is a dimensionless material constant, n is the strain hardening exponent,

ijδ is the Kronecker delta, 1
3ij ij kk ijs = σ − σ δ is the deviatoric stress, and 3

2e ij ijs sσ = is the von Mises

equivalent stress. The deformation theory assumes that the state of stress determines the state of strain
uniquely as long as the plastic deformation continues. This is identical to the nonlinearly elastic stress-
strain relation as long as unloading does not occur. This paper is concerned with the development of
sensitivity equations for the J-integral using only the deformation theory of plasticity.

Under quasi-static condition, in the absence of body forces, thermal strains, and crack-face traction, the
domain integration form of the J-integral for a two-dimensional problem is [6]
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where W is the strain energy density, A is the area inside an arbitrary contour, q is a weight function which
is unity at the outer boundary of A and zero at the crack tip. For a mode-I problem, the velocity field V
={V1, 0}T. By applying the shape sensitivity concept described earlier, the sensitivity of J is
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Equations 11-15 are valid for both plane stress and plane strain conditions and can be inserted in Equation
10 to yield the first-order sensitivity of J with respect to crack size. The integral in Equation 10 is
independent of the domain size and can be calculated numerically using the standard Gaussian quadrature.
A 2 × 2 or higher integration rule is recommended for calculating J� .

FRACTURE RELIABILITY ANALYSIS

Consider a cracked structure with uncertain mechanical and geometric characteristics that is subject to
random loads. Denote by X an N-dimensional random vector with components X1, X2,⋅⋅⋅, XN

characterizing all uncertainty in load, geometry, and material parameters. Let J be a relevant crack-driving
force that can be calculated from FEM. Suppose, the structure fails when J > JIc, where JIc is the mode-I
plane strain fracture toughness of the material. This requirement cannot be satisfied with certainty,
because J depends on input X which is random and JIc itself is a random variable. Hence, the performance
of the cracked structure should be evaluated by the probability of failure PF, defined as
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where f X x( ) is the joint probability density function of X, and g J JIc( ) ( ) ( )X X X= − is the
performance function. The failure probability in Equation 16 involves multi-fold probability integration for
its evaluation. In this study, the first-order reliability method (FORM) [7] was used to compute this
probability. The calculation of failure probability in the context of FORM can be viewed as a constrained
nonlinear optimization problem, which in turn requires first-order sensitivities of J with respect to all
random parameters. The proposed shape sensitivity method can be effectively applied to FORM when the
crack size is modeled as a random parameter.

NUMERICAL EXAMPLES

Example 1: Sensitivity Analysis of M(T) and SE(T) Specimens
Consider a middle-tension [M(T)] and a single-edged-tension [SE(T)] specimens with width, 2W = 1.016
m, length, 2L = 5.08 m and a crack length, 2a, that are subjected to far-field remote tensile stress, σ∞ =
172.4 MPa. Two distinct crack sizes with normalized crack lengths, a/W = 0.25 and 0.5 were considered
for both specimens. For material properties: reference stress, σ0 = 154.8 MPa; elastic modulus, E = 207
GPa; Poisson's ration, ν = 0.3; and Ramberg-Osgood parameters, α = 8.073 and n = 3.8. Figures 1 and 2
show the geometry and loads of the M(T) and SE(T) specimens, respectively. A finite element mesh for
1/2 model of the SE(T) specimen and 1/4 model of the M(T) specimen is shown in Figure 3. A plane stress
condition was assumed. Second-order, eight-noded quadrilateral elements from ABAQUS [5] library
were used. The number of elements and nodes were 208 and 691, respectively. Focused elements with
collapsed nodes were employed in the vicinity of crack tip. A 2 × 2 Gaussian integration was used.

Tables 1 and 2 show the results of J and aJ ∂∂ for M(T) and SE(T) problems, respectively. For aJ ∂∂ ,
two sets of results are shown. One is based on the proposed sensitivity method described in this thesis.
The other is based on the finite-difference method using a one-percent perturbation of crack length. The
results of Tables 1 and 2 show that the continuum sensitivity method provides very accurate results of



aJ ∂∂ when compared with the corresponding results of the finite-difference method. Unlike the virtual
crack extension techniques, no mesh perturbation is needed in the proposed method. The difference
between the results of the proposed method and the finite-difference method is less than four percent.

Example 2: Reliability Analysis of DE(T) Specimen
Consider a double-edged-tension [DE(T)] specimen with width, 2W = 1.016 m, length, 2L = 5.08 m, and
random crack length, a. It is subject to a far-field tensile stress, σ∞ , as shown in Figure 4. The load (σ∞ ),
crack size (a/W), and material properties (E, α, and JIc) were treated as statistically independent random
variables with their properties listed in Table 3. The Poisson’s ratio, ν = 0.3 and the Ramberg-Osgood
exponent, n = 3.8 were assumed to be deterministic. The same finite element mesh of Figure 3 was used
for this DE(T) specimen (at mean crack length) for 1/4 model. A plane stress condition was assumed.

Using continuum sensitivity of J and FORM, reliability analyses were conducted to calculate the
probability of failure FP , as a function of mean far-field tensile stress E[σ∞ ]. Figure 5 shows the plots of

FP vs. E[σ∞ ] for both deterministic ( /a Wv = 0) and random ( /a Wv = 10, 20 percent) crack sizes, where

/a Wv denotes the coefficient of variation (COV) of a/W. The results indicate that the failure probability

increases with the COV (uncertainty) of a/W as expected and can be much larger than the probabilities
calculated for a deterministic crack size, particularly when the uncertainty of a/W is large. For /a Wv = 10

percent, failure probability was also calculated by Monte Carlo simulation with the sample size at least 10
times the inverse of failure probability being estimated. According to Figure 5, the probability of failure by
FORM is in good agreement with the simulation results.

Figure 1: M(T) specimen Figure 2: SE(T) specimen
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CONCLUSIONS

A new method was developed for continuum shape sensitivity analysis of a crack in a homogeneous,
isotropic, nonlinearly elastic body subject to mode-I loading conditions. The method involves the material
derivative concept of continuum mechanics, domain integral representation of the J-integral, and direct
differentiation. Unlike virtual crack extension techniques, no mesh perturbation is required in the
proposed method. Numerical examples have been presented to illustrate the proposed method. The results
show that the maximum difference between the sensitivity of stress-intensity factors calculated using the
proposed method and reference solutions obtained by the finite-difference method is less than four percent.
Based on the continuum sensitivities, the first-order reliability method was formulated to perform
probabilistic fracture-mechanics analysis. A numerical example is presented to illustrate the usefulness of
the proposed sensitivity equations for probabilistic analysis. Since all gradients are calculated analytically,
the reliability analysis of cracks can be performed efficiently.
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TABLE 1
SENSITIVITY OF J FOR M(T) SPECIMEN

Sensitivity of J (∂J/∂a)
kJ/m3

a/W
J

kJ/m2
Prop.

Method
Finite
Diff.

Diff.
%

0.25 2.00×103 27.6×103 26.8×103 2.87

0.5 11.2×103 17.2×104 17.6×104 -2.73

TABLE 2
SENSITIVITY OF J FOR SE(T) SPECIMEN

Sensitivity of J (∂J/∂a)
kJ/m3

a/W
J

kJ/m2
Prop.

Method
Finite
Diff.

Diff.
%

0.25 6.20×103 14.7×104 14.4×104 1.82

0.5 3.70×105 17.1×106 16.6×106 3.29

TABLE 3
STATISTICAL PROPERTIES OF INPUT

Random
Variable Mean COV

Probability
Distribution

a/W 0.5 0-0.2 Uniform
E 207 GPa 0.05 Gaussian

α 8.073 0.1439 Lognormal
∞σ 40-110 MPa 0.1 Gaussian

JIc 1243 kJ/m2 0.47 Lognormal

Figure 5: Failure probability of DE(T)
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