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ABSTRACT 
 
A domain independent integral is obtained from the principle of virtual work. A suitable choice of the virtual 
displacement field allows variation of the position of a crack tip. For materials possessing a strain energy function 
Eshelby’s [1] definition of the force on a point defect is used to obtain the crack extension force. The method is 
general and allows treatment of a crack whose surfaces and front are curved by using curvilinear coordinates. To 
illustrate the applicability of the method three examples of the point-wise crack extension force are given, with 
different combinations of crack surface and crack front curvature. A general expression of the crack extension 
force for curved cracks is suggested. In Cartesian coordinates the proposed expression is reduced to Rice’s [2] 
J-integral. 
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INTRODUCTION 
 
Eshelby’s [1] definition of the force acting on a point defect in an elastic solid is briefly: minus the rate of increase 
of the total energy with respect to a variation of the position of the defect. The total energy is the sum of the strain 
energy of the part of the solid considered and of the potential energy of its external loads, if any. The force is 
expressed as an integral of a normal component of Eshelby’s energy momentum tensor taken over a finite and 
closed surface containing the defect. Two essential features of this integral are that it is path independent and has 
a finite value as the integration area is shrunk towards zero around the defect. In crack problems the point defect 
is naturally associated with the tip of the crack and the force integral, which must be zero on stress-free crack 
surfaces, is called the ‘crack extension force’. 
 
In this work we start by constructing a domain independent integral by using the principle of virtual work. A 
suitable choice of the virtual displacement field allows variation of the position of the crack tip. For materials 
possessing a strain energy function a general expression of a domain independent integral is derived, which is not 



associated with any geometry in particular. Application to a given crack geometry is most conveniently done by a 
suitable choice of coordinate system in which the description of the crack geometry is as simple as possible. The 
method is general and by choosing curvilinear coordinates, cracks with curved surfaces and front can be treated, 
the only restriction being that the curvilinear coordinate system must be orthogonal. This follows from the 
condition that crack extension is confined to the tangent plane of the crack and perpendicular to the crack front 
tangent and that the domain independent integral must vanish on stress free crack surfaces. The crack extension 
force is finally obtained by applying Eshelby’s [1] definition. 
 
Three examples of curved cracks are given, with different combinations of crack surface and crack front 
curvature. The first is the penny-shaped crack with radial crack extension (plane crack surface and curved crack 
front), the second the circular arc crack with crack extension circumferentially (curved crack surface and straight 
crack front) and the third the latter crack geometry but with crack extension axially (curved crack surface 
perpendicular to the direction of crack extension). In order to obtain the point-wise value of the crack extension 
force, loading and crack extension are assumed uniform along the crack front in all cases. The results imply the 
general form of the crack extension force for a crack with curved surfaces and a curved front. For a straight 
crack in Cartesian coordinates in two dimensions the general form of the crack extension force is reduced to 
Rice’s [2] J-integral. 
 
 
A DOMAIN INDEPENDENT INTEGRAL 
 
Let θi , i = 1 2 3, ,  be orthogonal curvilinear coordinates and consider the integral 
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where δ  denotes variation and S and V are surface and volume of a body or any part thereof, respectively, ti  

stress covector, u i  displacement and W strain energy. Superscripts denote contravariant and subscripts covariant 
tensor properties. Summation over indices appearing twice is implied. 
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comma (,) denotes covariant differentiation. Take the virtual displacement δu i  as minus the total differential of the 
”actual” u i , (the solution to the problem studied), that is  
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where δθ k  can be arbitrarily chosen. By the principle of virtual work the integral δI  is zero for any regular 
region. Further, (2) allows modelling of crack extension in the direction of θi  through variation of the position of 
the crack tip. 
 
Using the facts that i) variation and differentiation and ii) the second covariant derivative are commutative, the 
internal virtual work δW  can now be written 
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Inserting in (1) yields  
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As V is arbitrary, the integral expression δI  is domain independent if V is regular. Further, by using Cauchy’s 
formula t ni i

j
j= τ , where n j  is the outward positive unit normal vector on S, the divergence theorem, the 

equations of equilibrium, τi j
j
, = 0 , then, as expected, (3) can be obtained from the integrand of the surface 



integral in (1). Eqn. (4) is quite general and not associated with any geometry in particular. Application to a given 
crack geometry is most conveniently done through a suitable choice of coordinate system, as shown in the 
examples. 
 
The penny-shaped crack 
Let r z, ,θ  be cylinder coordinates. The non-zero Christoffel symbols are Γθθ

r r= −  and Γ Γr r rθ
θ

θ
θ= = 1 . Let a 

and Ψ be suitable constants, r a≤ , z = 0  the crack plane and δr  an increment which is independent of θi . At 
r a=  in particular, the crack extension increment is δr . Also, let the loading be axisymmetric. In the last integral 

in (4) the only non-zero component of δθ, j
k  is δθ δθ

θ
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Adding and subtracting W r  to and from the first and second volume integral and writing the first volume integral 
as a surface integral, we get 
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Let Γε  and Γo  be curves in the r z− -plane which enclose the crack tip, Γε  infinitely close to and Γo  remote 

from the crack tip and V a tubular volume generated by rotation of Γε  and Γo  in the sector θ ≤ Ψ / 2  around 

the z-axis. The surface S which surrounds a finite sector of the plane axisymmetric crack is divided into six parts; 
those generated by Γε  and Γo , here denoted Sε  and So , respectively, the crack surfaces and both ends of the 

tubular volume. 
 
It is easily seen that the surface integral in (6) vanishes on the crack surfaces and the ends of the tubular volume. 
On the crack surfaces nr = 0  and because they are stress free, ti = 0 . On the ends of the tubular region nr = 0  

and on account of axisymmetric loading and deformation t tr z= = 0  and u rθ , = 0  so that t ui r
i
, = 0  there. 

Further, the only non-zero τθ
i -component in the volume integral is τθ

θ . 

 
The surface element on Sε  and So  can be written dS r d= Ψ Γ , where dΓ  is a curve element. 

Take Γε and Γo  positive counterclockwise on Sε  and So , respectively. Then Eqn. (2), taking δr  outside the 

integrals and writing the volume element dV r dA= Ψ , where dA  is an area element and noting that all 
integrands are independent of θ , yield, as Γε  is shrunk towards zero around the crack tip, 
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where Ao  is the area inside Γo . 
Now δI = 0  implies a variation of the total energy of the domain considered in accordance with the definition of 
Eshelby [1]. Asδr  is the virtual displacement of the crack tip  
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must be the associated crack tip or crack extension force per unit length of the crack front. Cancelling common 
factors Eqs. (7) and (8) yield 
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Taking physical components (σij , e ij , ui , etc.) and using e uθθ θ θ= ,  we get 
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per unit crack front length circumferentially, which is also the point-wise value of the crack extension force. 
 
 
The circular arc crack 
Let r z, ,θ  be cylinder coordinates as above, b an additional constant and r a= , θ ≤ Ψ / 2  and z b≤ / 2  the 
crack plane. We consider crack extension in two different directions; in the first, δθ δθ= a ra / , where δθa  is 
independent of θi , is an increment in general. At the crack tip θ = Ψ / 2  the crack extension is a aδθ . The only 

non-zero component of δθ, j
k , which in this case isδθ δθθ,
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Transforming the first volume integral into a surface integral, we get 
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Let V be a tubular volume along the crack tip considered and with plane ends in the z-direction. For simplicity we 
consider uniform loading along the crack front. In this case also, the surface integral in (12) is zero on both ends 
of the tube and in particular on the curved crack surfaces. The surface element can be written dS bd= Γ  and the 
volume element dV bdA= . With suitable redefinition of Γε  etc., we arrive at the crack extension force, noting 

that a aδθ  is its physical displacement, with arguments similar to those for the penny-shaped crack 
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In physical components (13) reads 
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per unit length of the crack front (in the z-direction). 
 
Finally, we consider crack extension in the z-direction of the circular arc crack. Let δz be an increment that is 
independent of θi . The crack extension increment at z b= / 2  is thus δz . Now, all δθ, j

k = 0  and the variation 
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Let V be a tubular volume around the crack tip considered and otherwise identical to that of the penny-shaped 
crack. The surface and volume element can in this case be written dS r d= Ψ Γ  and dV dr r dz= Ψ , 
respectively. Transforming the volume integral we get 
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The surface integral (16) is with arguments similar to the above cases zero on the curved crack surface. For 
uniform loading along the crack front the surface integral also vanishes on the ends of the tubular volume. 
 
As Γε → 0  implies that r a→  it follows from Eqn. (8) that 



( )lim ,Γ
Γ

Γ
ε

ε

→ − =∫0 Wn t u r d aFz i z
i    (17) 

Taking δI = 0  and cancelling common factors Eqs. (16) and (17) yield 
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The integrand in (18) contains a singularity at the crack tip. This means that r = a can be extracted from the 
integral (formal proof omitted here, compare however with the contour integral of the penny-shaped crack, Eqn. 
(10)) and cancelled. In physical components the crack extension force is  
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per unit length of the crack front circumferentially. 
 
 
DISCUSSION 
 
In the examples given we have considered uniform crack extension and loading only, in order to enhance the 
influence of curvature of the surface of the crack and of the crack front and determined a point-wise value of the 
crack extension force. In a general loading case the surface integrals on the plane ends of the tubular region 
around the crack tip (taken together) do not vanish. Because the surface integral contains a covariant derivative 
its value is dependent on curvature. However, the surface integrals in question are also different from zero for a 
plane crack with a straight crack front in a general loading case, expressed in Cartesian coordinates, as shown by 
Carpenter et al. [3]. This feature is thus not exclusive of curved cracks. 
 
The increment δθi  in (2) can be arbitrarily chosen. In curvilinear coordinates the covariant derivative δθ, j

i  is 

however not necessarily always zero, even if δθi  is independent of θj , although such cases can in fact be found. 

The last integral in (4) is thus in general not zero for curved cracks and this term is the source of the ”correction” 
terms to the well-known remaining part of the expression for the crack extension force, the contour integral. In 
Cartesian coordinates the covariant derivative reduces to its partial counterpart and all ∂δθ ∂θi j  are zero. The 
integral (4) is reduced to 
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and for crack extension e.g. in the x-direction in the x-y-plane results 
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The crack surface of the penny-shaped crack is plane. The surface integral in (10) is thus a correction term due 
to the curvature of the crack front. In this case the curvature is constant along the crack front. It is also seen in (7) 
that the correction term is constant per unit length circumferentially. The result (10) has been obtained previously 
by many, as recently reviewed by Eriksson [4]. 
 
For the circular arc crack and crack extension circumferentially the crack front is straight but the crack plane is 
curved. The area integral in (14) is in this case a correction term for the crack plane curvature in the direction of 
crack extension. An exact analytical solution of the stress intensity factors of the circular arc crack has been 
obtained by Cotterell and Rice [5]. Lorentzon and Eriksson [6] have found the effective stress intensity factor 
calculated from Eqn. (14) using results of a finite element analysis to be within 1 percent on the average from 
those of the analytical solution, for identical boundary conditions. 
 



In the last example, the circular arc crack and crack extension axially, both the crack surface and the crack front 
are straight in the direction of crack propagation. In this case there is no correction term. We note however, that 
the crack plane is curved in a direction perpendicular to the direction of crack extension. 
 
From the above results we conclude that the general expression for the point-wise crack extension force of a 
curved crack must be a sum of a contour integral and one or more area integrals. The contour integral 
corresponds to or can be reduced to (21). There are two types of area integrals, one that is due to the curvature 
of the crack front in the direction of crack extension and the other that is due to the curvature of the crack surface 
in the direction of crack extension. The contribution to the total crack extension force from both types of volume 
integral increases with curvature. The crack surface curvature in a direction perpendicular to the direction of 
crack extension does not affect the crack extension force. 
 
If the crack front radius a in (10) tends to infinity the contribution from the correction term tends to zero and any 
finite segment of the crack front approaches a straight line. Similarly, if the radius r in (14) tends to infinity the 
contribution from the correction term tends to zero and the crack surface approaches a plane. All expressions for 
the crack extension force thus tend to (21) as curvature diminishes. We recognise of course this expression as 
identical to Rice’s [2] J-integral in two dimensions. 
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