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ABSTRACT

A domain independent integrd is obtained from the principle of virtud work. A suitable choice of the virtud
displacement field dlows variation of the position of a crack tip. For materids possessang a strain energy function
Eshdby’s[1] definition of the force on a point defect is used to obtain the crack extension force. The method is
generd and alows treatment of a crack whaose surfaces and front are curved by using curvilinear coordinates. To
illugtrate the gpplicability of the method three examples of the point-wise crack extension force are given, with
different combinations of crack surface and crack front curvature. A genera expression of the crack extension
forcefor curved cracksis suggested. In Cartesian coordinates the proposed expression is reduced to Rice's[2]
J-integrd.
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INTRODUCTION

Eshelby’s[1] definition of the force acting on a point defect in an dadtic solid is briefly: minusthe rate of increase
of the tota energy with respect to a variation of the pogtion of the defect. The total energy isthe sum of the strain
energy of the part of the solid consdered and of the potentiad energy of its externd loads, if any. The forceis
expressed as an integrd of anorma component of Eshelby’ s energy momentum tensor taken over afinite and
closed surface containing the defect. Two essentid fegtures of thisintegrd are that it is path independent and has
afinite value as the integration area is shrunk towards zero around the defect. In crack problems the point defect
is naturally associated with the tip of the crack and the force integral, which must be zero on stress-free crack
surfaces, is caled the ‘ crack extenson force'.

In thiswork we start by congtructing adomain independent integra by using the principle of virtud work. A
suitable choice of the virtua displacement field alows variation of the position of the crack tip. For materias
possessing a drain energy function agenerd expresson of adomain independent integrd is derived, which is not



associated with any geometry in particular. Application to a given crack geometry is most conveniently done by a
suitable choice of coordinate system in which the description of the crack geometry is as Smple as possible. The
method is general and by choosing curvilinear coordinates, cracks with curved surfaces and front can be trested,
the only restriction being that the curvilinear coordinate system must be orthogond. This follows from the
condition that crack extension is confined to the tangent plane of the crack and perpendicular to the crack front
tangent and that the domain independent integral must vanish on stress free crack surfaces. The crack extension
forceisfinaly obtained by applying Eshelby’s[1] definition.

Three examples of curved cracks are given, with different combinations of crack surface and crack front
curvature. Thefirgt is the penny-shaped crack with radia crack extension (plane crack surface and curved crack
front), the second the circular arc crack with crack extension circumferentidly (curved crack surface and straight
crack front) and the third the latter crack geometry but with crack extension axially (curved crack surface
perpendicular to the direction of crack extension). In order to obtain the point-wise value of the crack extenson
force, loading and crack extension are assumed uniform aong the crack front in dl cases. The resultsimply the
generd form of the crack extenson force for a crack with curved surfaces and a curved front. For a straight
crack in Cartesian coordinates in two dimensions the genera form of the crack extension force is reduced to
Rice's[2] J-integrd.

A DOMAIN INDEPENDENT INTEGRAL

Let g, i =1,2,3 beorthogona curvilinear coordinates and consider the integral
d =¢gydi dS- (wdv (@)
S \Y

where d denotes varigtion and Sand V are surface and volume of abody or any part thereof, respectively, t.

stress covector, u' displacement and W strain energy. Superscripts denote contravariant and subscripts covariant
tensor properties. Summation over indices gppearing twice isimplied.

Assume that there exists astrain energy function W =W(u';) suchthat t! = IW/1u’; , where t | isstressand a
comma (,) denotes covariant differentiation. Take the virtua displacement du' as minusthe tota differentia of the
"actual” u', (the solution to the problem studied), that is

' =-u,dg, )
where dg can be arbitrarily chosen. By the principle of virtual work theintegral di is zero for any regular
region. Further, (2) alows moddling of crack extension in the direction of q through variation of the position of
the crack tip.

Using thefactsthat i) variation and differentiation and ii) the second covariant derivative are commutative, the
interna virtual work dW can now be written
w

W = - 2o - tu, ®
Inserting in (1) yields
d :O%qudw Oy, ul g dS+ ¥, uj doffdv 4
Y% S v

AsV isabitrary, theintegra expresson dl isdomain independent if V isregular. Further, by usng Cauchy’s
fomuat =t/ n,, where n; isthe outward positive unit norma vector on S, the divergence theorem, the

equations of equilibrium, t.); = 0, then, as expected, (3) can be obtained from the integrand of the surface
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integra in (2). Eqgn. (4) is quite generd and not associated with any geometry in particular. Application to agiven
crack geometry ismost conveniently done through a suitable choice of coordinate system, as shown in the
examples.

The penny-shaped crack
Let r,q,z becylinder coordinates. The non-zero Christoffd symbolsare G, =-r and G}, =G] =1/r.Leta

and Y besuitable congtants, r £ a, z=0 the crack planeand dr an increment which isindependent of q . At
r =a in particular, the crack extenson increment is dr . Also, let the loading be axisymmetric. In the last integrd

in (4) the only non-zero component of dg|; is dq =dt/r . Writing the variation %qu :%d we obtain
from (4)
d =" gav- gucds+giu, Tav (5)
\% ﬂr S ’ \% ; r

Adding and subtracting W/r to and from the first and second volume integral and writing the first volume integral
asasurface integra, we get

d =gwn, - tu, )d ds- q%(w tou, o dv (6)
S \%

Let G, and G, becurvesinthe r - z-planewhich enclose the crack tip, G, infinitdly closetoand G, remote
from the crack tip and V atubular volume generated by rotation of G, and G, inthe sector |g £ Y /2 around

the z-axis. The surface S which surrounds a finite sector of the plane axisymmetric crack is divided into Six parts
those generated by G, and G, , heredenoted S, and S, respectively, the crack surfaces and both ends of the

tubular volume.

It iseasily seen that the surface integrd in (6) vanishes on the crack surfaces and the ends of the tubular volume.
On the crack surfaces n, = 0 and because they are stressfree, t. = 0. On the ends of the tubular region n, =0

and on account of axisymmetric loading and deformation t, =t, =0 and u,, =0 so that tiufr =0 there.
Further, the only non-zero t;* -component in the volume integrd is t ;| .

Thesurfacedementon S, and S, can bewritten dS=r Y dG, where dG isacurve eement.

Take G, and G, pogitive counterclockwiseon S, and S, respectively. Then Egn. (2), teking dr outside the
integras and writing the volume dement dV =Y r dA, where dA isan areadement and noting thet al
integrands are independent of q, yield, as G, is shrunk towards zero around the crack tip,

d =- Yadt limg,, §Wn, - t U, |dG+ Y gwn, - U, )rdG
G G
- Yo gW- iU )da ©
Ao

where A istheareaindde G, .
Now d =0 impliesavariation of the tota energy of the domain consgdered in accordance with the definition of
Eshelby [1]. Asdr isthe virtud displacement of the crack tip

F =limg, , fWn, - tu')dG ®)
Ge

must be the associated crack tip or crack extenson force per unit length of the crack front. Cancelling common
factors Egs. (7) and (8) yield

F=g{wh, - tu,)dG- gdw tu, ) dA €)
G Ao



Taking physicdl components(s;;, €;, U, €ic) andusng e,, = U, , We get

ij
F= dVVnr - tiui,r)dG' %dW- Sqqqu)dA (10)
G Ao

per unit crack front length circumferentialy, which is aso the point-wise vaue of the crack extension force.

Thecircular arc crack
Let r,q,z be cylinder coordinates as above, b an additional constantand r =a, | £Y /2 and |7 £b/2 the

crack plane. We consder crack extension in two different directions; in thefirst, dog = adq, / r , where dq, is
independent of g, isan increment in generd. Atthecrack tip g =Y /2 the crack extensonis adq, . Theonly

nortzero component of dqjk,whiminthiscaseisdq; = - rdq andthevariation %dqk :%ﬂMqrdq yied
with (4)

d :(‘)EMrdqu- U, dqdS- (3, rdgdv (11)
\ r ﬂq S ' \Y ’
Transforming the first volume integrd into a surface integrd, we get
d =g{wn, - tu, ) dgds- U’ rdg dv (12)
S \

Let V be atubular volume dong the crack tip consdered and with plane ends in the z-direction. For amplicity we
congder uniform loading along the crack front. In this case dso, the surface integrd in (12) is zero on both ends
of the tube and in particular on the curved crack surfaces. The surface eement can be written dS =bdG and the

volume eement dV = bdA. With suitable redefinition of G, etc., we arrive at the crack extension force, noting
that adq, isitsphysca displacement, with arguments Smilar to those for the penny-shaped crack

\1 i Y
F= orr(\/\/nq - U, )dG- (tful +tdu?)dA (13)
G Ao
In physical components (13) reads
N N
F=g{wn, - tu,, )dG- O (Siqlr +Sqglly ) dA (14)
G Ao

per unit length of the crack front (in the zdirection).

Findly, we condder crack extenson in the z-direction of the circular arc crack. Let dzbe an increment thet is
independent of q . The crack extension increment & z=b/ 2 isthus dz. Now, dl dq = 0 and the variation

w w : .
ﬂ_chqk = Edz yield with (4)
— \TM/ Y i
d =0 kdV - ¢y,u,dzdS (15)
v Te s

Let V be atubular volume around the crack tip consdered and otherwise identica to that of the penny-shaped
crack. The surface and volume eement can in this case bewritten dS=Y rdG and dV =drrY dz,

respectively. Transforming the volume integra we get
d =Y gwn, - t,u,)rczdG (16)
S

The surface integrd (16) is with arguments similar to the above cases zero on the curved crack surface. For
uniform loading along the crack front the surface integral aso vanishes on the ends of the tubular volume.

As G, ® 0 impliesthat r ® a it followsfrom Egn. (8) that



lim o W, - t,U, )r dG=aF (17)
G

Teking d =0 and cancdling common factors Egs. (16) and (17) yied
aF = gfwn, - tu,)rdG (18)
G

Theintegrand in (18) contains asingularity a the crack tip. Thismeansthat r = a can be extracted from the
integrd (formd proof omitted here, compare however with the contour integral of the penny-shaped crack, Egn.
(20)) and cancelled. In physica components the crack extension force is
F =¢wn, - tu,)dG (19)
G
per unit length of the crack front cdrcumferentialy.

DISCUSSION

In the examples given we have consdered uniform crack extension and loading only, in order to enhance the
influence of curvature of the surface of the crack and of the crack front and determined a point-wise vaue of the
crack extenson force. In agenerd loading case the surface integrals on the plane ends of the tubular region
around the crack tip (taken together) do not vanish. Because the surface integral contains a covariant derivative
its vaue is dependent on curvature. However, the surface integrals in question are aso different from zero for a
plane crack with a straight crack front in a generd loading case, expressed in Cartesian coordinates, as shown by
Carpenter et d. [3]. Thisfeature is thus not exclusive of curved cracks.

Theincrement dq' in (2) can be arbitrarily chosen. In curvilinear coordinates the covariant derivative dqij is
however not necessarily ways zero, evenif dq' isindependent of q, , athough such cases can in fact be found.

Thelast integrd in (4) isthusin genera not zero for curved cracks and this term is the source of the ” correction”
termsto the well-known remaining part of the expresson for the crack extension force, the contour integrd. In
Cartesian coordinates the covariant derivative reduces to its partia counterpart and al idg / 19’ arezero. The

integra (4) isreduced to

d =W dV - ¢y,u , dgdS (20)
\ S
and for crack extenson e.g. in the x-direction in the x-y-plane results
F = d\/\/nx - tiui’x)dG (21)
G

The crack surface of the penny-shaped crack is plane. The surface integrd in (10) is thus a correction term due
to the curvature of the crack front. In this case the curvature is constant dong the crack front. It isaso seenin (7)
that the correction term is constant per unit length circumferentialy. The result (10) has been obtained previoudy
by many, as recently reviewed by Eriksson [4].

For the circular arc crack and crack extension circumferentialy the crack front is straight but the crack planeis
curved. The areaintegra in (14) isin this case a correction term for the crack plane curvature in the direction of
crack extenson. An exact andytica solution of the stress intengity factors of the circular arc crack has been
obtained by Cotterell and Rice[5]. Lorentzon and Eriksson [6] have found the effective stress intengity factor
cdculated from Egn. (14) using results of afinite dement andyssto be within 1 percent on the average from
those of the andyticd solution, for identica boundary conditions.



In the last example, the circular arc crack and crack extension axidly, both the crack surface and the crack front
are straight in the direction of crack propagation. In this case there is no correction term. We note however, that
the crack planeis curved in adirection perpendicular to the direction of crack extension.

From the above results we conclude that the general expression for the point-wise crack extenson force of a
curved crack must be a sum of a contour integra and one or more areaintegras. The contour integral
corresponds to or can be reduced to (21). There are two types of areaintegras, one that is due to the curvature
of the crack front in the direction of crack extenson and the other that is due to the curvature of the crack surface
in the direction of crack extension. The contribution to the total crack extension force from both types of volume
integral increases with curvature. The crack surface curvature in adirection perpendicular to the direction of

crack extension does not affect the crack extension force.

If the crack front radius a in (10) tends to infinity the contribution from the correction term tends to zero and any
finite segment of the crack front approaches astraight line. Smilarly, if the radiusr in (14) tendsto infinity the
contribution from the correction term tends to zero and the crack surface approaches a plane. All expressions for
the crack extension force thus tend to (21) as curvature diminishes. We recognise of course this expression as
identical to Rice's[2] J-integrd in two dimensons.
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