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ABSTRACT 
The paper discusses the determination of residual stress state in a cooled down orthotropic alumina ceramics 
with the use of FEM (finite elements method) numerical modelling. The discrete model takes into 
consideration the ceramics consisting of two dominating grain size fractions. The current model allows 
changing the proportion between grain sizes in the fractions. The results of computations are presented as 
distributions of the residual stress components. The stress concentration areas are responsible for cracks 
origination and path determination of their subcritical growth. The average value of the stress component cσ  
is identified as the peak position of the proper distribution and it is quantity characteristic for a given 
ceramics. The presented model may be used for investigation of ceramics and ceramic composites as well. 
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INTRODUCTION 
In cooling down polycrystalline alumina from sintering to room temperature the random variation in 
crystallographic orientation of orthotropy from one grain to another induces a very complex state 
of constraint. This leads to appearing and remaining of the complex three-dimensional residual stress state 
in the ceramic material at the room temperature. Stress concentration areas have fundamental significance 
for strength property, especially for the cracking resistance. 
 
The complicated spatial variation of the residual stress field depends on the elastic properties of grains, the 
grain size and the shape distribution. The residual stress across the grain boundary can be sufficiently large 
to initialise boundary microcracking. In elastic solids the stress Tσ  is given by Blendel and Coble (1982):  
 
 TET ∆α∆β=σ  (1) 
 
where β is a coefficient dependent on the shape and the grain orientation ( >+∈<β 5.0,5.0 )1, E is Young’s 
modulus, is a difference in the single-crystal thermal expansion coefficients along the direction α∆



considered,  is a difference between the temperature  (at which the sample was stress-free) and the 
room temperature T . Value of   for alumina was found in the paper [2] and equals 0.9 E-6 K

T∆ cT

0 α∆ -1. 
 
Solution of the elastic body equilibrium problem, which is caused by thermal expansion orthotropy by finite 
elements method (FEM) leads to the solution of the body equilibrium equations with special materials 
model [7]. For the elastic materials the main matrix equation can be written as follows: 
 
 PKU =  (2) 
 
where K is the stiffness matrix which depends on geometry and materials properties, U is the unknown nodal 
displacements vector and P is force loading vector. For the heating and cooling process the vector P is 
a function of thermal strains too. The strains depend on the temperature increment ∆  and thermal 
expansion coefficients, which show the phenomenon of orthotropy. Solution Eqn. 2 and calculation U vector 
allows us to calculate strains and then, using Hook’s law, the body stress. The advantage of the FEM 
calculations presents the possibility of using the same finite elements mesh for any vector P (loading force 
which aggregates nodal forces, pressure and forces caused by temperature, etc.) and any boundary 
conditions. Finite elements method allows analysing of any real element of structure while taking into 
consideration real loads. 
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FEM MODELS OF POLYCRYSTALLINE ORTHOTROPIC CERAMICS 
 
The calculations were made for a prism that was assumed to be an internal part of an ,,infinite” ceramic 
body, filling very small volume of the body. The body is an element of analysed ceramics structure and the 
prism is the volume containing a number of ceramic grains. The body can be a real element of any ceramic 
structure (macroscopic scale). The prism presents a finite volume of ceramic body in microscopic scale. The 
model contains cubic and polyhedral grains (Figure 1). It allows changing of the proportion between sizes of 
cubic and polyhedral grains in the model (Figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The model of cubes and polyhedrons 
 
The grain size coefficient S was defined as a relation between current cubic grain size x and characteristic 
dimension of the finite element mesh X. The X value is constant for all of the models. For S=1 model 
contains only cubic grains. The other acceptable values of coefficient S vary from 0.3 to 0.7, to avoid 
computational errors resulting from excessive finite elements deformations. The set of grains labelled ,,A” 
begins in the corner of the model (Figures 1,2,3). 
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Figure 2: Definition of the grain size coefficient S=x/X 
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Figure 3: The unit of models may be obtained by changing size and shape of grains 
 

For each grain the orthotropy direction c is chosen at random [6] from a set of possible axes. An exceptional 
requirement is verified during the randomising process. The directions of orthotropy must be different in the 
neighbouring grains. This requirement may be completed during the grain generation process by checking 
grains that had been defined earlier than the current grain (Figure 5a,b). 
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Figure 4: Scheme of grains generation and the set of possible directions 

 
METHOD OF CALCULATIONS 
 
A ,,two-steps” method was used for all the models. Firstly, it was assumed that the displacements of the 
prism boundaries were obtained from calculation for thermally loaded an isotropic element of ceramics 
structure. Secondly, it was assumed that the prism consists of ceramic grains. The grains were assumed to be 
thermally orthotropic. The calculations were made for the prism’s boundary displacement from the first step 
and for the same thermal load. The calculations were made for the following values of parameters: Young’s 
modulus E=380 GPa, Poisson’s ratio ν=0.25, ∆T=1150 K, thermal expansion coefficients αa=αb=8.6E-6 K-1, 
αc=9.5E-6 K-1 (a, b, c – grain orthotropic axies), isotropic thermal expansion coefficient α = 8.9E-6 K-1.  



STATISTICAL POSTPROCESSING OF RESULTS 
 
The distribution of each component of stress may be counted by summing the appropriate values calculated 
in integration points in the finite elements. The distribution may be obtained for the entire model, as well as 
for the cubic and polyhedral grains separately (Figures 5,6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The σc distribution for small, cubic ,,A” grains, for the size coefficient S=0.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The σc distribution for large, polyhedral ,,B” grains, for the size coefficient S=0.3 
 
Figure 7 shows the composition of σc average values (peak positions of stress distribution) obtained 
separately for ,,A” and ,,B” grains. They produce two separate curves. Each of them consists of two parts. 
Part A1 belongs to ,,A” grains of cubic shape and part A2 belongs to ,,A” grains of polyhedral shape. 
Adversely, part B1 belongs to polyhedral ,,B” grains and part B2 belongs to cubic ,,B” grains.  
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For example, part A1 shows that the σc value decreases from 186 MPa to 139 MPa when the grain size 
coefficient S enlarges from value of 0.3 to 0.7. For S=1 there are only cubic “A” and cubic ,,B” grains in the 
model with σc stress value of 133 MPa. Then, beyond this point, cubic ,,A” grains turns into polyhedral ,,A” 
grains and produce the curve A2.  
 
An example of contour plot for σc stresses is presented below. 
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CONCLUSIONS 
 
The proposed type of modelling of ceramic microstructure improved recently enables investigations of 
relative grain size influence on stress distribution, for neighbouring grains of different sizes grouped together 
in the same volume. The greater difference in size between neighbouring grains the higher stresses in small 
grains are observed. The model presented here may be used for investigations of ceramics (Al2O3) and 
ceramic composites (Al2O3 and ZrO2) as well. 
 
Using the statistic postprocessing of numerical results, the quantitative assessment of stresses in the 
modelled microstructure is possible [8]. The stress values calculated in integration points of finite elements 
are counted, to obtain stress distribution in the modelled volume of material. Then the peak position 
of the distribution is interpreted as the average stress value. This makes the numerical investigations similar 
to an experimental technique used for average residual stress measuring (the piezospectroscopic technique 
was enabled to verify numerical results). 
 
The values of calculated average stresses are comparable with the results of our experiment [4] 
(the piezospectroscopic technique was enabled) and remain in a good agreement with those described 
in the works of other authors [1,3,5]. 
 
The results of calculations presented in the form of contour plots are useful for qualitative assessment 
of calculated stresses. They show that the significant part of internal energy in the modelled volume of 
microstructure is concentrated in the area close to the grain boundaries. 
 
The advantage of numerical simulations is that the stress distribution may be counted separately for 
apportioned grains (e.g. of different size: small or large).  
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