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ABSTRACT

We present a continuum phase �eld model for crack propagation. It includes a phase �eld that is
proportional to the mass density and a displacement �eld that is governed by linear elastic theory.

The phase �eld smoothes the sharp in-

Figure 1: A surface plot of a phase �eld with a
growing double-ended crack.

terface, enabling us to use equations of
motion for the material rather than for
the interface and thus avoiding front
tracking. The interface dynamics thus
emerges naturally, without making phe-
nomenological assumptions about the
crack dynamics. Our model is physi-
cally motivated, yet it avoids being spe-
ci�c; it does not focus on a particular
material, which makes it easier to iden-
tify the basic principles of crack behav-
ior.
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INTRODUCTION

The study of fracture is usually approached using mathematical descriptions and numerical simulations
based on empirical observations. Finite elementmethods are commonly used to investigate the behavior
of fractured materials on a large scale. Though these methods work well in most cases, the equations
are mainly based on experimental observations.

We present a continuum description starting from basic theoretical assumptions. We introduce a phase
�eld model, originally used to describe thermodynamic phase transitions and widely used to model
solidi�cation[1], and combine it with a displacement �eld. The phase �eld serves two main purposes.
First, it smears out any sharp interfaces, averaging out microscopic detail and leaving only the necessary
macroscopic variables. Second, the model gives equations of motion for the material rather than the
boundaries, thus front-tracking is avoided. One of our main goals is to �nd macroscopic fracture laws.

The next section gives an outline of the theoretical model, presenting the main equations. This is fol-
lowed by a discussion of the numerical implementation. We then describe our procedures for measuring
the Gri�th's threshold, before giving some concluding remarks.

THE FRACTURE MODEL

The model consists of a phase �eld � and a displacement �eld u. The former is interpreted as the
normalized mass density, and typically has values between zero and one. The latter, through its deriva-
tives, represents strain in the material. The model is based on a free energy F that is constructed so
that the equations of motion (2{3) minimize the energy F with respect to time (that is, dF=dt < 0).
The free energy is given by
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where V is the volume of the system. The �rst term in the integrand is a gradient term discouraging
spatial uctuations in the phase �eld. The parameter w is proportional to the interface width. The
second term is a Ginzburg-Landau double well potential, favoring values of � at zero and 1 � r � u,
representing the two phases vacuum and solid, respectively. If the material is completely unstrained,
then r � u � 0 and the upper value is one, otherwise this value is either somewhat higher (for a
compressed material) or lower (for a stretched material). The factor 1� ��r �u can be thought of as
a density of vacancies or interstitials. The parameter h controls the height of the barrier between the
vacuum and solid phases. The last term is the elastic strain energy density E(�) = (1=2)Cijkl�kl�ij. For
a homogeneous, isotropic material, the tensor Cijkl can be described by the two Lam�e constants � (the
shear modulus) and � by Cijkl�kl�ij = (��mm�ij + 2��ij) �ij. Since the elastic energy is only de�ned in
the material (that is, � 6= 0), E(�) is multiplied by a factor of �2; thus the strain energy will go to zero
in the vacuum. The strain is related to the displacement �eld by �ij = (@jui+@iuj)=2. This means that
the divergence of the displacement �eld is just the trace of the strain, r � u = �mm.

The equations of motion for the phase �eld � and displacement �eld u are
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where � and D are the viscosity and the di�usion constant, respectively. Note that Equation (3) is the
continuity equation. This means that total �, or mass, is conserved. The �rst term in J is a di�usion



term, while the second term makes sure that the mass follows the motion of the displacement �eld. The
evolution of the �elds are constructed to be over-damped and downhill in the free energy.

The Lam�e constants are connected through Poisson's ratio � by � = 2��=(1 � 2�) [2]. In the case of
plane strain, the r�u term in the double well potential turns out to be crucial to preserve this relation.

NUMERICS

We have implemented Equations (2) and (3) for a plane strain system. Thus we can perform our
simulations on a two-dimensional regular �nite di�erence grid with periodic boundary conditions in
both directions. We have investigated both single-ended and double-ended cracks under mode I loading,
see Figure 2.
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Figure 2: A strained material with a (a) single-ended or a (b) double-ended crack. The arrows indicate
the loading direction, the dashed lines the periodic boundaries.

The system is initially strained in the y-direction with a uniform constant strain s. The strain is
represented through the spatial derivatives of the displacement �eld u, which means that there is an
inherent discontinuity in the strain �eld at the y-boundary. This problem has been resolved using
\skew-periodic" boundary conditions. In essence, we identify u on the bottom with u+�u on the top
where �u parameterizes the applied strain. Thus the strain remains continuous across the boundary.
In addition to inserting a constant-slope displacement �eld in the y-direction, the phase �eld is altered
from 1 to 1 � r � u. This is to account for the change in mass density if a material is stretched or
compressed.

After straining the sample in the y-direction, a double ended crack, or slit, is inserted by removing mass
(that is, setting the phase �eld to zero) in an elongated rectangular area in the center. The crack will
grow if the strain is above some threshold value as given by the Gri�th's criterion. One of our �rst
tasks was to �nd this threshold value (see below).

The model described above has two di�erent mechanisms for moving mass. One is a very slow pro-
cess, which we identify as di�usion. The other is more rapid, where the phase �eld moves with the
displacement �eld.

The periodic boundary conditions of the �nite-di�erence grid allows the use of Fourier methods. To in-
crease stability, we implemented a semi-implicit scheme[3]. The implicit parts can be solved analytically
in Fourier space, which increases e�ciency considerably.



MEASURING GRIFFITH'S CRITERION

One way of �nding the Gri�th's threshold is to measure the energy density (per unit length) of a cracked,
relaxed system (that is, �nd the surface energy), and compare it to the energy density of a strained
unfractured material. A small concern is that the measured surface energy can vary signi�cantly if the
crack is too narrow or the energy is measured too soon after the crack tip has passed. The energy of
the unfractured material is just a special case of Equation (1) with @yuy = s = constant, @xux = ��s
and � = 1 �r � u; using � = 2��=(1 � 2�), we get the relation

F � �(1 + �)s2 ; for s� 1 : (4)

Taking the di�erence between the energy density in front of and behind the crack gives the energy
released as a strained material is fractured and relaxed. The Gri�th's criterion is reached when the
strain is so low that the energy on both sides of the crack tip are the same. In our model, this happens
at around 4% strain with our current choice of parameters.

Another way of �nding the Gri�th's criterion is by comparing the crack velocity to the energy release
rate G. This can be done using the J -integral[4]. The J -integral must be positive for the crack to
grow. If the crack is parallel to the x-axis, the energy release rate G is equivalent to the x-component
of the J -integral, Jx. Instead of performing the contour line-integral, it is common to convert it to an
area-integral for increased accuracy when doing the integral numerically. The area integral is de�ned
as

Jx = �

Z
A


(x; y) dx dy (5)

where 
(x; y) = W@xq � �ij@xui@xjq and W = �2E(�). Here q is a function that is unity around the
crack tip and zero outside. Notice that if q is constant in a region, 
(x; y) � 0, so in e�ect the line
integral is replaced by a \thick line" contour integral, where the \thick line" exists everywhere q has a
gradient.

CONCLUSION

We have presented a continuum phase �eld model of fracture, where the free energy and equations of
motion are based on basic descriptions of thermodynamics. The fracture interfaces emerge and evolve
naturally, avoiding the need for front tracking and phenomenological assumptions of crack growth laws.
One of our main goals is to �nd macroscopic fracture laws.

Future work may include general three dimensional simulations, and spatial and temporal noise to
represent inhomogeneities and plasticity.
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