
ORAL REFERENCE: ICF100914OR  
 
 
 
 
 
 

HIGH TEMPERATURE CREEP DAMAGE OF 
FABRICATED STRUCTURES 

 
 

Frederick W. Brust 
 

Engineering Mechanics Group, Battelle Memorial Institute, 505 King Ave, 
Columbus, Ohio 43201 

 
 
 

ABSTRACT 
 

The need for structural systems to perform reliably at high temperatures continues to increase.  
Improvements in energy production, pollution control, chemical processes (especially, engine propulsion), 
efficient micro-process devices, among other applications, are possible with higher temperature operations. 
Higher temperature operation means that creep damage must be managed over the life of the component.  
One of the important mechanisms of creep damage development, matter diffusion, is investigated here.  In 
particular, the effect of elastic accommodation on the grain boundary diffusion-controlled void growth is 
analyzed using an axisymmetric unit cell model.  An incremental form of the virtual work principle was used 
to formulate the boundary value problem involving grain boundary diffusion.  The model accounts for 
material elasticity and void interaction effects.  Analyses are performed for initially spherical voids spaced 
periodically along the grain boundary.  The results of the analyses on void growth rates agree well with the 
Hull-Rimmer [1] model after the initial transient time.  During the elastic transient, void growth rates can be 
several orders of magnitude higher than the steady state growth rate. Though the elastic transient time may 
occupy a small portion of the total rupture time, in metallic components experiencing cyclic loading 
conditions with short hold times, elasticity effects may be important.   
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INTRODUCTION 
 

Failure in metals exposed to high temperature creep conditions predominantly occurs by nucleation 
and growth of cavities along grain boundaries, thus resulting in intergranular fracture. Nucleation of such 
cavities is mainly driven by diffusion of atomic flux from the lattice or interfaces into grain boundaries.  
Further growth of these cavities is aided by diffusion of atomic flux primarily from cavity surface into grain 
boundaries.  The nucleation of these intergranular cavities in many instances occurs during the primary creep 
stage. In addition to diffusion mechanisms, the creep deformation of the material also contributes to cavity 
growth.  The purpose of this paper is to quantitatively examine the effect of elastic transient on growth of 
spherical cavities.  The growth of the cavities was controlled by grain boundary diffusion as well as material 
elasticity. 
 
 



ANALYSIS 
 
Consider a damaged material exposed to high temperature creep conditions in which voids were periodically 
arranged in parallel sheets.  The initial shape of the voids was assumed to be spherical with a radius of ‘a’.   
Interaction effects between voids lying within a sheet, with initial mean center-to-center spacing of ‘b’, were 
accounted for by approximating the voided medium as consisting of cylindrical unit cells, each with a void 
located at is center, as shown in Figure 1. Assuming axisymmteric conditions, only one quarter of the 
cylindrical unit cell needs to be modeled.  The axisymmetric unit cell is shown as hatched region in Figure 1.  
The far-field stress state was assumed to be uniaxial.   The grain material was assumed to be elastically 
linear and isotropic.  Diffusion of matter takes place along the grain boundaries. 
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Figure 1.  Dimensions and discretization for model. 
 
We consider an incremental form of a functional, F, given by, 
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for all kinematically associated fields, namely, the rate of deformation tensor, d, and the velocity, v,  and the 
volumetric flux, j,  crossing unit length in the grain boundary.  In Equation (1), σ is the applied stress, T is 
the applied traction along the boundary S, A denotes the grain boundary area, and Γ denotes the collection of 
arcs where the grain boundaries meet the void surfaces.  The normal stress, σo, on the grain boundary at the 
void tip, also known as the sintering stress, is given by,  
  
 )2 + 1( s = o κκγσ                                 (2)  
 
where γs is the surface energy, and κ1 and κ2 are the principal curvatures of the surface of the void. The 
diffusion parameter, D, used in Equation (1), is related to the grain boundary diffusion coefficient of the 
material by, 
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where Db is the grain boundary diffusion coefficient at a given temperature, T, Ω is the atomic volume, δb is 
the thickness of the diffusion layer, Qb is the activation energy, and R and k are the Gas and Boltzmann’s 
constant. The functional [1] Starts from Needleman and Rice [2], with appropriate modifications to account 
for material elasticity, etc.  It can be easily shown that F as given in equation (1) is not only stationary but 
also a global minimum for the true field.  Exercising the variational principle on F, it can be shown that the 
full set of field equations for the considered problem will result.  
 
Using the above formulation to develop the finite element equations (as elaborated in [3]), a special user 
element (UEL) was developed and used with the ABAQUS finite element software [4].  We have examined 
the transient effect for several metallic materials at a temperature, T = 0.6 Tm in this study.  The properties of 
the materials are given in Table 1.  We consider an average void spacing 10 µm  (b = 5 µm).  Using this 
value for b and a/ b  = 0.1, we obtain a characteristic time, τ, also given in Table 1, for the materials 
considered in this study.  The properties listed in Table 1 are obtained from Frost and Ashby [5].  In all the 
cases examined, the ratio of far-field stress to Young’s modulus, σ∞/E, was 10-3.  The characteristic time is 
defined as: 
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TABLE 1.   
MATERIAL PROPERTIES OF THE METALLIC MATERIALS USED. 

 
 

Material Property Aluminum Copper γ−Iron 
Young’s Modulus, E (MPa)* 75.30 124.0 205 

Poisson’s Ratio, ν** 0.34 0.32 0.3 

Atomic Volume, Ω (m3) * 1.66 x 10-29 1.18 x 10-29 1.21 x 10-29 

Melting Point, Tm (K) * 933 1356 1810 

Grain Boundary (GB) Diffusion 
Pre-exponential, δbDb (m3/s) * 5 x 10-14 0.5 x 10-14 7.5 x 10-14 

Activation Energy for GB Diffusion 
Qb  (kJ/mole) * 84 104 159 

Characteristic Time, τ,  secs 772 857 327 

Grain Boundary Energy, γb (J/m2) ** 0.63 0.65 0.78 
Surface Energy,  γs (J/m2) ** - 1.73 1.95 

 
 
In Figure 2, the ratio of the void growth rate predicted by FEM and by the Hull-Rimmer model (the Hull-
Rimmer classical solution neglect elastic accommodation, i.e., assumes rigid response [1]) is plotted against 
normalized time.  The inset shows the transition from transient to steady state conditions.  It can be seen that 
the transient time is larger for larger a/b values.   The variation of the ratio of normal stress and applied 
stress along the grain boundary ahead of the cavity tip is shown in Figure 3 for a/b of 0.1.  In the figure, X 
denotes the distance from the tip of the cavity along the grain boundary.  While in the pure elastic case the 
peak stresses occur at the cavity tip, matter diffusing into the grain boundary from the cavity surfaces relaxes 
the stresses at the tip, even during the beginning stages of the transient.  Consequently, the peak stress occurs 
away from the cavity during the transient stage.  With increasing time, the peak stress decreases in 
magnitude and moves away from the cavity tip. As can be seen from the figure, a parabolic profile is 



achieved as steady state condition ensues. Vitek [6] obtains a variation similar to the one shown in Figure 3 
for the transient stress distribution ahead of crack tip arising due to non-uniform deposition of matter from 
the tip onto the grain boundary.  It is also found (but not shown here) that the peak stress away from the 
cavity tip is higher for larger a/b ratios.   This would imply that the chances for nucleation of new cavities, 
during transient stages, increase with initial cavity radius-to-spacing ratio.   
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Figure 2.   Temporal variation ratio of void growth rate predicted by FEM and by the Hull-Rimmer model 

for several a/b ratios in γ-Fe.   Inset shows the transition from transient to steady state. 

0.00

0.60

1.20

1.80

0.00 0.20 0.40 0.60 0.80 1.00

 

3.82E-06 2.71E-05 3.3E-04
3.77E-03 1.92E-02 9.66E-02
2.47

X  / (b - a)

t / τ

 
Figure 3.  Temporal changes in stress distribution ahead of the cavity tip along the grain boundary in γ-Fe 
for a/b = 0.1. 
 



The temporal variations of void growth rates normalized with the respective rate predicted by Hull-Rimmer 
model, are shown in Figure 4 for all the three metals.   Indeed, all the curves collapse into a single 
distribution indicating that the choice of time scale is appropriate. It is worth mentioning that Raj [7]  was 
the first to suggest the appropriate time scale as given in equation (4).  It is interesting to note that Trinkaus 
[8] and Shewmon and Anderson [9] note that in the case of an isolated cavity along a grain boundary, the 
stress and displacement field expand around the cavity in a self-similar manner in proportion to the cavity 
radius, with a ∝ t1/3.   They obtained this result assuming rigid grains.  In our problem, a wedge of material is 
introduced ahead of the cavity tip during the transient stage, due to material elasticity.  In the work of 
Trinkaus [8] and Shewmon and Anderson [9] a wedge is introduced because the cavity is isolated (well 
separated and small).  In addition, unlike the Hull and Rimmer model they assume that the grain boundary 
thickening vanishes at some distance away from the cavity. However, their solution is different from the 
present in that elasticity and void interactions are not taken into account. 
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Figure 4.  The temporal variations of void growth rates normalized with the respective  
rate predicted by Hull-Rimmer model for all the three metals. 

 
CONCLUSIONS 
 
 The effect of elastic accommodation on the grain boundary diffusion-controlled void growth was 
analyzed using an axisymmetric unit cell model.  In order to accomplish this we have extended the 
formulation of Needleman and Rice [2] to account for material elasticity.   This extension also involved an 
incremental formulation of the virtual work principle of the boundary value problem involving grain 
boundary diffusion.  The model accounts for void interaction effects.  The results of the analyses on void 
growth rates agree well with the Hull-Rimmer model after the initial transient time for the three different 
metals considered.  During the elastic transient, void growth rates can be several orders of magnitude higher 
than the steady state growth rate.  Using the predictions of finite element analyses for several metals, we 
demonstrated that the characteristic time is appropriately given by equation (4).   Indeed, Raj [7] was the 
first to suggest a similar form for the characteristic time.  It was observed that the transient time is larger for 
larger a/b values (or larger volume fraction of cavities).  Though the elastic transient time may occupy a 
small portion of the total rupture time, in metallic components experiencing cyclic loading conditions with 
short hold times, elasticity effects may be important.   
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