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ABSTRACT

In this paper, we will answer several abstract, formal questions about the nature of crack growth and
nucleation. Bringing a field theory point of view to fracture illuminates things in what I hope will be an
entertaining way.

Formally, what is the crack nucleation rate? Fracture is an instability of elastic theory under tension. For
thermally nucleated cracks, there is an analogy with supercooled liquids. Here the crack nucleation rate can be
thought of as an imaginary part of the free energy - giving the decay rate of the metastable, stretched material.
As an amusing consequence, we can formally calculate the asymptotic form for the high-order nonlinear elastic
coefficients, and explicitly show that elastic theory has zero radius of convergence.

Formally, can we derive the the crack growth laws from symmetry? We can describe mixed-mode three-
dimensional fracture as a moving curve in space, decorated with a description of the local crack plane, and
driven by the stress intensity factors along the crack. Imposing the symmetries gives us the form of the
crack growth laws in two dimensions, explaining the (well-known) fact that cracks under shear (mode II)
abruptly turn until the stress becomes purely extensional (mode I). The form of the crack growth law in three
dimensions will be derived, and linear stability analysis for mixed-mode fracture will be briefly summarized,
with connection to factory-roof morphologies.
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INTRODUCTION

In this paper, I will summarize formal work done in collaboration with Jennifer Hodgdon[1] and Alex
Buchel[2, 3] on nucleation and growth of cracks in brittle, isotropic, homogeneous materials. This work is
formal in the sense that bring to the problem the perspectives and approaches of theoretical physics: we’ll be
asking fundamental questions that most of the participants in this conference wouldn’t think to ask. Sometimes
answering very basic questions can be illuminating; in any case I hope it will be entertaining.

CRACK NUCLEATION

What is the crack nucleation rate? In a practical context, one may ask what the failure rate is of a component
in a machine: the number of breakages per unit time. This definition depends on the size and shape of the object
and the external loading. More generally, for a given material under a given load, there will be a rate of crack
formation per unit volume per unit time.



the material (grain boundaries, surface heterogeneities, pre-existing microcracks, dislocation tangles). These
heterogeneities usually evolve in time (fatigue, work hardening, electromigration, void formation). This makes
the failure rate history dependent, and too complicated a problem to start with. So, we’ll focus on brittle
fracture, where we perhaps can assume that the material far from the crack tip does not irreversibly transform.

With this approximation, we have two cases. (1) The important case is when the failure is due to the
inhomogeneities: distributions of microcracks[4], distributions of bond strengths[5], or other randomness[6].
In all of these cases, the rate is number of failures for a given increment of strain, not per unit time. Either
the stress is large enough to trigger failure or not: a given sample, if it survives the initial loading, will survive
forever. This leads to some elegant theories and simulations, but isn’t what I’m focusing on today. (2) The
case we study is when the material is homogeneous, and the failure is triggered by a thermal fluctuation. This
basically never happens, but it’s an interesting theoretical problem.

So, fundamentally, what is the fracture nucleation rate for our brittle, homogeneous material? This is
actually a deep theoretical physics question. The basic problem is defining what is meant at finite temperature
by a material under tension. The lowest energy state (free energy, to be pedantic) for a large cube of brittle
material under external strain can easily be seen to be broken in two. The elastic energy released is proportional
to the volume; the surface energy cost is proportional to the cross-sectional area; for fixed external strain there
will be a length at which breaking wins. One should note that this breaking strain in real materials isn’t very
large: a cubic meter of iron will prefer to break in two when stretched by 10�m (140 �m if one includes the
energy lost due to plastic deformation during fracture).

Crack nucleation is precisely the mechanism by which a material goes from the metastable stretched state
to the state which is broken in two. There is a close analogy to the nucleation of crystals in supercooled liquids.
In supercooled liquids[7] the liquid is a metastable state with a decay rate given by the thermal probability of
generating a critical nucleus. For fracture, the stretched state is a metastable state with a decay rate given by
the thermal probability of generating a crack of the size given by the Griffiths threshold.

(The analogy even extends to the practicality of the thermal nucleation mechanisms. Homogeneous nucle-
ation of crystals in supercooled liquids almost never happens: the crystal almost always nucleates on a dust
particle, or on the surface...)

Let’s do this calculation explicitly, for a two-dimensional straight crack of length `, in a medium under
external hydrostatic tension (a pressure P < 0). One can solve the elastic equations to find the energy of this
crack. Let � be the surface energy (energy per unit length, in two dimensions, of the crack surface), Y be the
Youngs modulus, and � be Poisson’s ratio. If we define a critical crack length `c (the Griffiths[8] threshold) by

`c = 4Y �=�P 2(1� �2) (1)

then the energy of the crack is
E = 2�`� �`2=`c: (2)

It follows that cracks with ` > `c will grow to lower their energy, and that cracks with ` < `c will heal
(at least in our model). The energy at the top of the barrier is E(`c) = �`c = 4Y �2=(�P 2(1 � �2)), and
the probability for this critical crack to form by a thermal fluctuation is suppressed by the Boltzmann factor
exp(�E(`c)=kBT ). The fracture nucleation rate �failure per unit volume per unit time will be given by some
prefactor times this Boltzmann factor:

�failure = �0 exp(�E(`c)=kBT ): (3)

(Calculating this prefactor �0 is quite a subtle problem[3].)
This calculation is precisely analogous to the corresponding one for a critical nucleus of solid forming

in a supercooled liquid[7]. Indeed, the crack as it nucleates will be filled by a gas of vapor atoms (think of
fracture in a piece of dry ice, where the vapor pressure isn’t vanishingly small). The spontaneous fracture rate
is precisely the nucleation rate of a gas forming in a super-stretched crystal.

Remember, though, that we claimed from a fundamental point of view the difficulty is defining the stretched
material. A stretched piece of material is fundamentally a transient: how do we use equilibrium statistical
mechanics to study what is only a metastable equilibrium? The precise definition of the stretched, metastable
state is as an analytical continuation from the compressed state[7, 2]. In particular, suppose we study the



( )
include the effects of thermal fluctuations producing small cracks, and then analytically continue E(P ) to
negative pressure, one can show that it becomes complex! The decay rate (3) is proportional to the imaginary
part of the energy:

ImE(P ) = C�failure(P ) = E0 exp
�
�4Y �2=�P 2(1� �2)kBT

�
: (4)

Metastable states in statistical mechanics are defined by an analytic continuation of the (free) energy. The
nucleation rate is defined as a particular dynamical constant prefactor �0=E0 times the imaginary part of this
complex energy.

What can we derive from this formal imaginary part to the energy? The real part of the energy is related to
the bulk modulus? Let’s define the pressure-dependent bulk modulus K(P ) by
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where the elastic material has cross-sectional area A. c0 is the inverse of the normal bulk modulus, and the
higher order terms cn represent nonlinear elastic coefficients. These are normally ignored, because by the time
they become important plastic deformation or fracture has set in, but in principle a careful experiment could
measure them. Now, if E(P ) is an analytic function, then it obeys Cauchy’s theorem,

E(�P ) = 1=2�i
I


E(T )=T + PdT = 1=2�i
I


E(T )=T
1X
n=0

(P=T )ndT: (6)

with  circling �P in the complex plane. Because it divides by i, it can be used to write the real part of the
free energy E(P ) in terms of the imaginary part. Exchanging the sum and the integral, choosing contours and
checking asymptotics, we can calculate the n-th nonlinear elastic constant in equation 5 asymptotically for
large n:

cn ! (�1)n(n + 2)=�A

BZ
0

ImE(T )=T n+1dT (7)

So because the (complex) energy is an analytic function, the high-order nonlinear elastic constants are related
to the fracture rate.

We used this to answer an extremely formal question. What is the radius of convergence of nonlinear
elastic theory? We can use the ratio test: the radius of convergence equals the ratio cn=cn+1 as n!1. Using
(7) and (4) and doing the integrals, we find

cn=cn+1 ! �n�1=2
�
8�Y �2=�(1� �2)

�1=2

as n !1: (8)

(Doing the prefactor carefully[3] with various continuum limits leaves this expression unchanged, except that
the surface tension � becomes the temperature-dependent surface free energy.) The ratio goes as n�1=2, and
the radius of convergence is zero.

Should we be concerned? Hooke’s law is the first term of a series that doesn’t converge? First, the physical
origin of this is that our brittle material is in principle unstable as soon as the pressure P becomes negative. If
you’re not concerned about the fact that your bridges in theory will eventually fall down because of thermal
crack nucleation, perhaps the associated non-convergence of Hooke’s law shouldn’t distress you. Indeed,
thermal fluctuations are probably too weak to make observable effects in any measurement of the nonlinear
elastic constants. Second, nonlinear elastic theory has lots of company: quantum electrodynamics[9] (the most
quantitatively successful theory in physics) and Stirling’s series for n! also have zero radius of convergence.

Intellectual curiosity aside, what of practical importance can we glean from our calculation? First, per-
haps the high-order nonlinear elastic constants of disordered materials might be computed by similar means,
and (disorder being important to the fracture rate) might have effects large enough to measure. Second, the
imaginary part of the frequency dependent elastic constants are related to viscosities: perhaps considering
both external strain and frequency together might be illuminating (vibration-induced thermal fracture rates?)



and might relate to the plastic flow rate at very early stages (before work hardening sets in). The correspond-
ing problem in two dimensions has been well studied,[10] but it seems likely that tangling of dislocations
dominates in three dimensions.

CRACK GROWTH LAWS

What are the crack growth laws? On long length and time scales, most macroscopic systems obey simple
laws of motion, which depend on the properties of the material only through setting constants (like density and
elastic constants) or functions (like surface energies including the crystalline anisotropy). Can we deduce the
laws describing the growth of a crack front, coarse-graining over all the atoms, grains, precipitates, and plastic
deformation near the crack tip, to get relatively simple laws depending on only a few materials parameters or
functions?

Jennifer Hodgdon and I studied this problem, inspired by conversations with Tony Ingraffea and members
of his group. Ingraffea’s group[11] solves the hard part of the problem: given a complicated, three-dimensional
crack, they can tell us the stress intensity along the crack tip. All they wanted was the rules for advancing
the crack forward in time. The simplest problem for us to study, and the one of most current interest to
their group, was quasistatic fracture in an isotropic, homogeneous medium. Including crystalline anisotropy
would lead us to the physics of cleavage along the crystalline planes. Including random inhomogeneities
into theories of brittle fracture leads to logarithmically rough fracture surfaces[12], but not as rugged as the
experiments[13]. Including the inertial dynamics of the growing front leads to interesting traveling waves
along the crack front[14] that might improve the agreement with experiment. In ductile and intergranular
fracture, the roughness reflects void growth and the presence of grains and inclusions.[15] Our work did not
include any of these effects.

Naturally, Ingraffea’s group already had a working solution. For mode I fracture, the material is described
by a crack growth velocity v(KI). For mode II fracture, the crack turns abruptly until it is mode I (the principle
of local symmetry[16]). There were two other rules in the literature for picking the crack growth direction: one
maximizing the energy release[17], and one moving into the direction of minimum strain energy density[18].
All three rules seemed to predict crack paths which agreed well with one another[19]. At that time (around
1990) they were just moving into 3D fracture, and were quite interested in more crack growth laws for more
general geometries.

Jennifer Hodgdon and I decided to try to write the most general crack growth law allowed by symmetry.
Let us describe the local crack front with an orthonormal triad of vectors: b̂ perpendicular to the local crack
face, t̂ tangent to the crack front, and n̂ pointing in the direction along which the crack was last growing. Our
theory is valid on long length and time scales: in particular, we assume that the curvatures of the the radii of
curvatures for the crack surface and crack front are large, so to zeroth order the crack is straight and flat (we’ll
expand in the curvatures). There are then three symmetries of the crack: the reflection Rplane in the n̂� t̂ plane
of the crack, the reflection Rcross in the n̂ � b̂ plane perpendicular to the crack front t̂, and the 180Æ rotation
about n̂ (which is the product of the two other symmetries).

The first convenient thing to fall out of the symmetry analysis is the decomposition of the strain field into
modes. The linear elastic solution near the crack tip can be decomposed into a superposition of solutions
with definite symmetries under Rplane and Rcross. Mode I is symmetric under both transformations, mode II
is antisymmetric under reflections in the plane but symmetric to reflections perpendicular to the front, and
mode III is antisymmetric under both. Jennifer found that there was yet another mode (mode IV?) which is
symmetric under Rplane and antisymmetric under Rcross. Presumably Hodgdon’s mode IV is usually ignored
because it does not introduce a crack opening.

We then assume that the body being cracked and the radii of curvature of the local crack front and crack
surface are all large compared to the inhomogeneities in the material and the nonlinear zone around the crack
tip. This is what is needed to ensure that there is a region around the crack tip where the elastic displacement
fields scale with the square root of the distance r to the crack tip. (In general[1, 20] the displacement field for
each mode can be expanded in a series of all half-integer powers of r. The less singular terms are important
only far from the crack, and are determined by the boundary conditions and the crack shape; the more singular



for example, we describe ductile fracture only if the body is much larger than the plastic zone. We write the
growth laws of the crack in terms of the three stress-intensity factors KI , KII , and KIII in this (so-called K-
dominant) region, their gradients along the crack front, and the curvatures of the crack front and crack surface.
We impose the symmetries of the problem described above, plus a gauge symmetry[21, 1] associated with
reparameterization of the crack front, to find the most general law of motion allowed by symmetry.

In two dimensions, we found that the most general crack growth law was of the form

@x=@t = v(KI; K
2
II ; K

2
III)n̂; @n̂=@t = �f(KI ; K

2
II ; K

2
III)KIIb̂; (9)

where x is the location of the crack tip, v is the velocity of the crack, and f represents the tendency for a crack
to turn under the external load (hence changing the direction n̂ pointing along the crack).

What does this equation imply about the crack growth? If KII = 0, the crack won’t turn; otherwise it will
turn (if f > 0) so as to reduce KII in magnitude. Thus we agree with the principle of local symmetry, except
that our cracks will turn gradually towards this direction, rather than jump abruptly to the new orientation.
Over what turning radius does our crack turn? Using results of Cotterell and Rice[22], Hodgdon showed that if
the angle of the crack differs from the angle that makes KII = 0 by a small amount ��, then KII = KI��=2;
this implies that �� exp(�fKIx=2v), and the angle decays exponentially to pure mode I with a material-
dependent decay length of 2v=fKI . We expect this length scale to be set by a microscopic scale characteristic
of the material: the atomic size in a glass, the size of the nonlinear zone in a ductile material, etc. This means,
in essence, that our analysis agrees with the traditional prescription that the crack turns abruptly. We think
of writing the crack growth laws as differential equations replaces the atomistic short-distance cutoff with a
smooth one.

Our analysis did not make any assumptions about microscopic mechanisms. We believe that arguing
whether the crack turns to maximize the energy release or minimize the strain energy density is misguided: if
you turn the crack according to the wrong rule, in the succeeding step it’ll keep turning and you’ll converge to
the same final trajectory (making KII = 0) with a radius of curvature given by the step size in your algorithm.

So much for reinventing what’s already known. What about three dimensions? Now everything depends
on where we are along the crack front. If we let s measure arclength along the crack front, then up to first
order in gradients
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where f , g�, and hij are functions of KI, K2
II, and K2

III, and the velocity v can be a function of these and
a number of gradient terms[1]. Only f among these constants, which gives the turning radius for mode II
fracture, is expected to be large (as discussed above): the others should be all of the same order of magnitude.

What can we do with this expression? First, if the crack begins nearly flat and straight, we can do perturba-
tion theory to see if the crack becomes flatter and straighter, or if it goes unstable. Jennifer Hodgdon[23] found
that cracks under mode I are stable (as expected), but that cracks under mixed mode I and mode III (twisting)
can be stable or unstable depending on the materials constants: in particular, if gI > 0, steady-state mode III
cracks are unstable to small perturbations. Experimentally, she found that cracks under mode III turned to form
a helical crack surface: such turning wasn’t allowed for in our perturbation theory, which assumed periodic
boundary conditions. Others find, for longer cracks, that mode III fracture is unstable to the formation of a
“factory roof” morphology. It wasn’t possible at the time to test Hodgdon’s results with realistic crack-growth
simulations, and this work remains unpublished.[23]

Second, we can use it to propagate real 3D cracks in simulations, and compare to experiments and more
microscopic simulations. I anticipate that our symmetry analysis will prove important and useful, but that there
will be additional internal variables (perhaps crack-tip curvature[24]) that will be necessary for describing the
crack, and which may induce crack branching and other effects missing in our existing theory.
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