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ABSTRACT 
 
In the present paper, the expected principal stress directions under proportional and nonproportional 
multiaxial high-cycle fatigue loading are determined by averaging the instantaneous values of the 
“principal” Euler angles. Such angles are employed to describe the position of the principal stress axes at 
the generic time instant, and the averaging procedure is performed through suitable weight functions. Three 
possible types of weight functions based on stress parameters are adopted and verified using available 
experimental results related to some metallic materials. It is shown that the fatigue fracture plane position 
under multiaxial loading may be established on the basis of the averaged direction of the maximum 
principal stress, by employing proper weight functions. 
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INTRODUCTION 
 
According to several well-known stress-, strain- and energy-based models for multiaxial fatigue (for 
instance, [1-9]), the failure assessment is usually performed by referring to the “critical plane”. The concept 
of the critical plane, which is related to the crack initiation phenomenon, was firstly proposed by Stanfield 
[1] in 1935, and has been developed since then. 
 
On the other hand, from a review of fatigue test results under in-phase and out-of-phase cyclic multiaxial 
loading, it appears that the final fracture plane very often corresponds to: 
(a) the plane on which the normal stress, or strain or strain energy density attain their maximum; 
(b) one of the two maximum shear planes; 
(c) an intermediate position between (a) and (b). 
 
Case (a), case (b) and case (c) are typical for brittle materials, ductile materials and semiductile materials, 
respectively. The fracture plane for case (b) is one of the two maximum shear planes in which the highest 
normal stress, or strain or strain energy density occurs [4,6,8]. Case (a) is preferred when the ratio of the 

 



shear stress amplitude τa to the normal one σa is less than 0.63 [10], or when the ratio of the shear strain 
range ∆γ to the normal one ∆ε is less than 1.5 [3]. Such ratios depend on the kind of material, stress or strain 
level and temperature. Some theoretical predictions of the fatigue fracture plane position have been 
presented by Kanazawa et al. [11], Findley [12] and Stulen and Cummings [13]. 
 
Numerous models of fatigue crack initiation and propagation for multiaxial cyclic loading do not take into 
account the change of the principal strain and stress axes. That is a possible reason why they can only be 
applied to some particular cases. Consequently, averaged principal stress directions should be determined, 
and the averaging procedure could be carried out, for instance, by employing suitable weight functions [14-
17]. In the following, the position of the principal stress axes 123 at the generic time instant is described by 
the three “principal” Euler angles ϕ, θ, ψ. 
 
The aim of the present paper is to verify whether the weight function method can allow us to determine the 
expected fatigue fracture plane position. The algorithm presented in [15–17] is applied to experimental data 
related to one steel and two cast irons [18,19]. 
 
 
AVERAGING PROCEDURE 
 
The principal axes 123 system can be considered as a transformation of the XYZ system, fulfilling a 
condition of orthogonal conversion or specific rotation [20]. A transformation between two Cartesian 
systems can be described in different ways, but the direction cosines matrix is usually employed. On the 
other hand, such a matrix includes nine dependent components, and we cannot average all the matrix 
elements since the averaged matrix would not satisfy all the conditions of transformation. Moreover, we are 
not able to select which three independent elements of the direction cosines matrix should be averaged. 
Thus, the three independent Euler angles ϕ, θ, ψ are selected for description of the transformation from the 
XYZ system to the 123 system (Fig.1). Let us assume that the 1-axis and the 3-axis represent the directions 
of maximum and minimum principal stresses, respectively. 
 

 
 

Figure 1: Principal stress axes 123 described by the Euler angles ϕ, θ, ψ 
 

 
Under variable loading, the Euler angles are time-varying functions as well as the stress tensor components. 
Different sets of the Euler angles could describe the same position of the principal axes 123. Consequently, 
in order to average correctly the results determined for different time instants, the ranges of the Euler angles 
have to be reduced through a two-stage procedure, bringing them to 0 ≤ ϕ, θ ≤ π /2 and -π/2 ≤ ψ ≤ π/2. A 
detailed description of an algorithm to perform such a reduction can be found in Refs [15,16]. 
 
From a physical point of view, it seems logical to carry out the Euler angles averaging through suitable 
weight functions [14-17] in order to include various factors influencing the fatigue fracture behaviour (stress 

 



amplitudes, exponents of the Wöhler curve and so on). Therefore, the mean directions of the principal stress 
axes may be described by the weighted mean Euler angles: 
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Three kinds of weight functions are examined in the following: 
 
Weight I 

    W         (2) 1)(1 =kt

According to such a weight function, each positions of the principal axes influences the mean position of the 
principal axes to the same degree, irrespective of the stress values. Application of this weight function gives 
us W = N, and leads to the arithmetic means.  
 
Weight II 

 

  ( )

( )

( ) ( )



























≥

<

=
afcktfor

m

afc

kt

afcktfor

kt
σσ

σ

σ

σ

σσ

1
1

10

2W      (3) 

where: 
mσ – exponent of the fatigue curve (σa – Nf) 
σaf – fatigue limit 
c – constant 
This weight function includes only those principal axes positions for which the maximum principal stress 
σ1(tk) is greater than the product of c and the limit stress σaf; the participation of such positions in averaging 
exponentially depends on the parameter mσ of the Wöhler curve. 
 
Weight III 

  ( )

( ) ( )

( ) ( )
















































≥

<

=

afkt

m

af

kt

afkt

m

af

kt

kt

for

for

σσ

σ

σ

σ

σσ

σ

σ

σ

1
1

1
2

1

3W
     (4) 

This weight function is similar to the weight function II, but it includes all the principal axes positions and, 
when σ1(tk) < σaf , the weight function exponent is divided in half. 
 
 
RESULTS OF THE SIMULATION CALCULATIONS 
 
The theoretical procedure above is applied to three metallic materials (Table 1). Fatigue test results including 
the actual position of the fatigue fracture plane are presented in Refs [18,19]. Thus, the position of the vector 

expη  normal to the actual fracture plane can be compared with the calculated position of the vector calη  , 
assumed to be coincident with the averaged position of the maximum principal stress axis. In the following, 
the solid angle α  between the X-axis and the vector η  ( calη  or expη ) is considered. The parameter c for the 
weight function II is assumed to be equal to 0.5. The generated cyclic courses are similar to those of fatigue 
tests (N = 100 discrete values at wave period T of the sinusoid are applied). 

 



TABLE 1 
MECHANICAL PROPERTIES OF THE TESTED MATERIALS 

Material Re[MPa] Rm [MPa] E[GPa] ν mσ σaf[MPa] 
GGG40 334.0 447.0 165 0.28 11.0 244.0 
GTS45 305.0 449.0 160 0.27 18.5 250.0 
18G2A 394.0 611.0 213 0.31 8.2 204.0 
where Re – yield point; Rm – tensile strength; ν – Poisson‘s ratio 

 
Cast irons GGG40 and GTS45 
Neugebauer [18] tested round specimens made of two cast irons: GGG40 and GTS45. The specimens were 
subjected to combined bending and torsion, with different amplitude ratio λ and phase difference δ (Tables 
2 and 3). 

TABLE 2 
CALCULATION RESULTS FOR CAST IRON GGG40 [18] 

No. σa 
[M.Pa]

τa 
[MPa] 

λ δ αexp 
[rad] 

αcal(w1)
[rad] 

αcal(w2) 
[rad] 

αcal(w3) 
[rad] 

1 200 200.00 1.000 0 0.144π 0.493π 0.176π 0.176π 
2 200 200.00 1.000 π/4 0.217π 0.419π 0.177π 0.177π 
3 220 220.00 1.000 π/2 0.183π 0.339π 0.138π 0.156π 
4 215 123.63 0.575 0 0.113π 0.493π 0.136π 0.136π 
5 220 126.50 0.575 π/4 0.129π 0.417π 0.125π 0.123π 
6 265 152.38 0.575 π/2 0.010π 0.337π 0.080π 0.087π 

TABLE 3 
CALCULATION RESULTS FOR CAST IRON GTS45 [18] 

No. σa 
[M.pa]

τa 
[MPa] 

λ δ αexp 
[rad] 

αcal(w1)
[rad] 

αcal(w2) 
[rad] 

αcal(w3) 
[rad] 

1 160 160.0 1.000 0 0.139π 0.493π 0.176π 0.176π 
2 170 170.0 1.000 π/2 0.133π 0.339π 0.133π 0.142π 
3 248 142.6 0.575 0 0.136π 0.493π 0.136π 0.136π 
4 248 142.6 0.575 π/2 0.117π 0.334π 0.038π 0.052π 

 
Steel 18G2A 
Pawliczek [19] tested round specimens made of 18G2A steel under combined bending and torsion, with 
different values of amplitude ratio λ (Table 4). 

TABLE 4 
CALCULATION RESULTS FOR 18G2A STEEL [19] 

No. σa 
[Mpa] 

τa 
[MPa] 

λ αexp 
[rad] 

αcal(w1)
[rad] 

αcal(w2)
[rad] 

αcal(w3) 
[rad] 

1 464 0.0 0.0 0.005π 0.245π 0.000π 0.000π 
2 374 0.0 0.0 0.004π 0.245π 0.000π 0.000π 
3 447 224 0.5 0.137π 0.493π 0.125π 0.125π 
4 364 182 0.5 0.142π 0.493π 0.125π 0.125π 
5 315 157 0.5 0.129π 0.493π 0.125π 0.125π 
6 298 149 0.5 0.110π 0.493π 0.125π 0.125π 
7 447 447 1.0 0.162π 0.493π 0.176π 0.176π 
8 403 403 1.0 0.160π 0.493π 0.176π 0.176π 
9 368 368 1.0 0.150π 0.493π 0.176π 0.176π 
10 344 344 1.0 0.167π 0.493π 0.176π 0.176π 
11 338 338 1.0 0.170π 0.493π 0.176π 0.176π 

 

 



ANALYSIS OF THE CALCULATION RESULTS 
 
Table 5 presents the absolute values of the mean errors in determination of fatigue fracture planes for the 
examined materials. The results obtained by using of the weight functions II and III are almost identical since 
their mathematical forms are very similar (Fig.2). The agreement between calculation and experimental 
results is quite good for all the materials considered: the best results are found out for steel 18G2A, while 
the greatest error occurs for cast iron GGG40, i.e. 0.036 π (about 6o). For the analysed materials, the 
fracture plane seems to be perpendicular to the weighted mean direction of the maximum principal stress. 
 
 

TABLE 5. 
ABSOLUTE VALUES OF MEAN ERRORS (IN [RAD]) IN DETERMINATION OF FATIGUE 

FRACTURE PLANE POSITIONS ACCORDING TO THREE WEIGHT FUNCTIONS 

Material Loading W1 W2 W3 
GGG40  bending with torsion 0.284π 0.036π 0.034π
GTS45  bending with torsion 0.284π 0.029π 0.028π
18G2A bending with torsion 0.326π 0.012π 0.012π
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Figure 2: Modification of the Euler angle ϕ by the weight functions II and III (test No. 5 in Table 2) 
 



CONCLUSIONS 
 
Some experimental data related to one steel, 18G2A, and two cast irons, GGG40 and GTS45, under 
multiaxial high-cycle fatigue have been compared with the theoretical results of the expected principal 
stress directions. For the three materials examined, the fatigue fracture plane position is about perpendicular 
to the weighted mean direction of the maximum principal stress. Such a direction is determined by 
averaging the instantaneous positions of the principal stress axes through suitable weight functions. For each 
time instant, the most appropriate weight functions take into account whether or not the maximum principal 
stress is greater than a certain level dependent on the fatigue limit. Furthermore, such weight functions are 
influenced by the value of the Wöhler curve exponent. 
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