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ABSTRACT 
 
 A simple numeric-experimental method for estimation of dynamic stress intensity factors (DSIF) at 
impact tests of cylindrical and beam specimens is proposed. For the case of solid cylindrical specimen the 
formulas are derived for estimation of DSIF from tensile impact tests (KI) and impact torsion (KIII), while for 
a hollow cylindrical specimen only tensile impact tests are used (KI). For the beam specimens symmetrical 
and eccentric three-point bending loading schemes are considered. The formulas derived contain parameters, 
estimated from modal analysis. They were evaluated using commercial Finite Element Analysis (FEA) 
package MARC. Based on the obtained numerical data and using the least square method, simple relations 
are derived for these parameters. These relations account also for some geometric parameters of specimens 
considered. 

For use of these formulas the experimental loading diagram “applied force – time” is necessary. 
Therefore, special testing equipment was developed for every type of loading and type of specimen (named 
above). In order to verify the proposed formulas, the values of DSIF are estimated numerically using FEA 
package MARC and Newmark incremental integration method for all the cases considered. Good correlation 
between the results obtained numerically and based on proposed formulas is observed. 
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INTRODUCTION  
 
 Until recently the dynamic problems of fracture mechanics were studied only for idealized cases (for 
instance for infinite solid). Nowadays, using advanced numerical methods (namely, FE method [1, 2]) it 
became possible to find a solution to the dynamic problems for solid with more real shape. 
 For evaluation of dynamic stress intensity factors (SIF) one can use also experimental approach. One 
way is to use a small-spacing strain gage. However, the drawback of this approach is a necessity to glue 
every strain gage to the specimen with following calibration. Another way consists in use of the photoelasti-
city method. This method requires high-speed photography and, hence, is very cumbersome and is used only 
in for calibration. 



 Even very complex mathematical models describe only part of dynamic effects and still require 
introduction of experimentally estimated parameters. In the other words, currently combined experimental-
numerical methods are widely used to solve dynamic problems. As an example the methodology [3-8] of 
data handling can be mentioned, which uses the “force – time” diagram, obtained from impact tests of beam 
specimens at one- and tree-point bending. In [9, 10] simple formulae for calculation of dynamic SIF for 
cylindrical specimens was proposed. 
 
 
PROBLEM FORMULATION AND SOLVING 
 

Tension of cylindrical specimen, weakened by surface circular crack. Let us consider cylindrical 
specimen with length 2h and radii r, which is contains an external circular crack of depth а at the middle. 
Two equal forces Р(t) are applied to the ends of the specimens. Approximating the function Р(t) by piece-
wise linear function: 
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Here  are the circular frequencies of natural oscillations of half of cylindrical specimen; n is a number of 
modes of natural oscillations, which are accounted for in the analysis; 
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0 iu is the іth component of the displacement vector of the point, where the force is applied;  is static 
SIF, when the specimen is loaded (in tension) by single force;  denotes SIF in the specimen deformed by 
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th normed mode of autonomous oscillations. 

 The frequencies of natural oscillations iω  and the corresponding to them displacements (eigenvec-
tors) are estimated from the generalized problems on eigenvalues [1, 11] 
 [ ] [ ]uu rr MK 2ω=  (3) 
and norming conditions 
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where  are the stiffness and mass matrixes [11]; [ ] [ ]K Mi δij  is the Kroneker matrix; index “Т” means 
transposition [11]. 
The formulae (2) represents the dynamic SIF as a sum of two additives: a quasistatic part and an inertial 
correction. 
 Dimensionless coefficients iη  and eigenfrequencies ρω=ω Eaii

*  (here E is the Young modulus 
and ρ - material density) do not depend on the specimen dimensions, but they do depend on the ratio of 
specimen length to its radii, relative depth of crack and Poisson ratio ν [1]. 
 In [9] simple relations are given for estimation of  та *

iω iη  for a range , and in [10] – 
for the range 0.2  under the condition 

0.27 ν 0.33≤ ≤
ν 0.4≤ ≤ .24 20≤≤ ah  

Tension of the hollow cylindrical specimen, weakened by external circular crack. We assume that a 
hollow cylindrical 2h - long specimen (with internal and external radii are correspondingly  і ) is 
weakened by external circular crack, which radii is “a”, and tensed by equally distributed forces, applied to 
the ends (along the ruling line). 

1r 2r

 If to represent the main vector of loading, applied to cylinder, as the piece-wise linear function (1), 
the dynamic SIF can be written in the form (2). 



The dimensionless frequencies of natural oscillations ρω= Erii 2
*ω  and the coefficients iη  were 

calculated numerically using commercial FEA package MARC for following values of geometric parame-

ters: ;1429 2 ≤≤ rh  ;80.035.0 21 ≤≤ rr  ( ) ( ) 5.02.0 122 ≤−−≤ rrar . After the relation  was 

analyzed we concluded that in this range of cylinder’ relative length it is enough to restrict oneself by three 
modes of autonomous oscillations, in order to reach sufficient accuracy. 
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Making use of the least square method, following relations for iω , та iη  were obtained: 
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At the same time the static SIF under the loading with the main vector equal to unity was calculated. 
Processing the obtained data with a help of the least square method the following approximation for ( )1

ISK  
derived: 
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Figure 1: Dependence of the dynamic SIF vs. time for tension of the hollow cylindrical specimen 

(1 – dynamic SIF calculated using equations (1, 2); 2 – dynamic SIF calculated using FEA). 
 

 Using FEA (namely Newmark method) we estimated dynamic SIF for cylindrical specimen with 
following dimensions: mm; mm; 31 =r 82 =r 60=h mm; 5,5=a mm; 200=E GPa, 3= 7870 Mg mρ , 



ν 0.3=

117601 =k

. The loading diagram was obtained experimentally according to [12]. Based on these results, 
following parameters for approximation of the “force-time” diagram were chosen: 

Pa; Pa; Pa; 83302 =k 539503 =k 04 =k Pa; 751 =t µs; 1402 =t µs; µs; 2503 =t 6004 =t µs. 
Comparison of the diagrams, obtained numerically (FEA) and one calculated using simplified formulae (2), 
(5) – (7) validates the approach developed. 

Torsion of cylindrical specimen, weakened by surface circular crack. Let us consider cylindrical 
specimen with following dimensions: length is 2h and radii is а. At the middle the specimen has a circular 
crack of depth с. The load, which main vector is equal to Т, is applied along the ruling line of the ends of 
specimens. 
 After the force Т is represented by the piece-wise function (1), the dynamic SIF can be written as 
follows: 
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where  are the circular frequencies of torsional natural oscillations of half of cylindrical specimen; n 

denotes number of modes of natural oscillations; 
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the displacement vector in the point, where load is applied;  means the static SIF for the specimen, 
loaded by the momentum, equal to a;  is the SIF in the specimen, deformed with the iIIIiK th normed mode of 
autonomous oscillations. 

For the range of specimen’ dimensions 0 7,03, ≤λ≤  and 0,130,8 ≤γ≤  ( rhrc 2; =γ=λ ) for ν=0,3 
making use of the Lancosh’ blocks method we evaluated the circular frequencies of torsional natural 
oscillations and corresponding to them eigenvectors. The data were analyzed using the least square method 
with following dependencies as the result: 
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The accuracy of approximations (9, 10) does not exceed 2%. For calculations of the dynamic SIF using 
equations (2), (9) and (10) one must have the static SIF’ value for the cylindrical specimen, loaded by 
torsion. There are several solutions to this problem, known from literature. For a range of λ parameter, based 
on the integral equations method, the SIF values have been obtained in [12]. Based on these values and using 
the least square method we got following dependence for ( )1

IIISK  
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 Eccentric bending of a beam specimen. At the initial stage of the loading history the interaction 
between the specimen and beam seats does not influence the dynamic SIF value. In the other words, for the 
brittle materials and high-speed loading a crack propagation begins before the interaction between the 
specimen and the beam seats start and, as a result, the subcritical loading is not influenced. These conditions 
are called “one-point-bending” or “bending without support”. First case is considered in [3]. Let us consider 
a case, when the crack is located not in the middle of the beam specimen (fig. 2). 
 As in the previous cases we represent the “force-time” diagram by piece-wise function. It is possible 
to show, that for such representation of the “force-time” diagram the dynamic SIF can be written as follows: 



 
 

Figure 2: The loading scheme of the beam specimen with eccentric crack. 
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where  denotes the circular frequencies of natural oscillations of the beam without support;  mean 
the number of modes of natural oscillations, which are taken into account in analysis; 
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th component of displacement 

vector for the point of load’ application; ,  are the static SIF for the tension of the specimen by 
force, uniformly distributed in the volume;  are the SIF in the specimen, deformed by ith normed 
mode of autonomous oscillations. 
 While calculating (K , , the volume loading was substituted by equally distributed loading 
applied to the top and bottom part of specimen. For this the FEA approach was used. The mesh quality was 
verified by comparison with the results, obtained in [14]. The results in the range 

)1
IS

)1(
IISK

64 ≤γ≤ , 
0.3 0.7; e W 1λ ε≤ ≤ = = can be described by equations (with error less than 1.5%): 
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The dimensionless coefficients 1 ,i 2iη η  and eigenfrequencies ρω=ω Eaii
*  do not depend on the 

specimen dimensions. For 1e Wε = = , 7.03.0 ≤λ≤ , 0.60.4 ≤γ≤  (here, WLWa =γ=λ ; ) and ν=0,3 
using the Lancosh blocks method we found the circular frequencies of natural oscillations and corresponding 

to them eigenvectors. Analyzing the relations , we concluded that it is enough to chose 
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The approximations (14) describe the numerical data with the deviation less, than 2%. For coefficients i1η  
following dependencies are proposed: 
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For 1 2 4, andη η η 5 the relative error does not excide 3%, but for approximations of 3,η η  the absolute error 
does not excide 0.003. Similar relations were obtained for i2η : 
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For first five coefficients the deviation of proposed approximation is the same as in previous case, but for 
 parameter the absolute error does not exceed 0.004. 26η

Using the dependencies (13) – (16) one can estimate the dynamic SIF for testing of beam specimen with 
eccentric crack. 
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