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INTRODUCTION 
 
Microstructural damage in composite structures arising from the application of mechanical and/or thermal 
loads is often unavoidable and its effects need to be taken into account when assessing structural 
performance, especially the occurrence of ply crack formation and delamination.  For structures subject to 
fatigue loading it is desirable to avoid damage occurrence of any kind as it can act as nucleation sites for the 
growth of macroscopic damage (e.g. delaminations) that eventually leads to the catastrophic failure of the 
structure.  As many structures experience some form of bend deformation during service it is vital that 
damage formation in the presence of bending is well understood.  Of particular relevance to the 
performance of structures is the prediction of the occurrence of microstructural damage in complex loading 
modes where out-of-plane bending modes of deformation occur in conjunction with in-plane biaxial and 
through-thickness loading.  
    
While a great deal of research has been devoted to the case of ply cracking in cross-ply laminates subject 
only to in-plane deformations, the practically important case of out-of-plane bending has received much less 
attention (e.g. [1-6]).  One objective of this paper is to summarise the important results that have been 
derived using an energy balance method for predicting the conditions for the steady state growth of ply 
cracks in a cross-ply laminate subject to bending and thermal residual stresses. A second objective is to 
indicate how the methodology for ply crack formation can be developed without a detailed analysis of the 
stress transfer that is in fact needed only to estimate the thermoelastic constants of a damaged laminate (as 
described in [6]).  The anti-clastic (i.e. biaxial) bending typical of deformed laminates will be taken into 
consideration.  
 
GEOMETRY AND LOADING CONDITIONS 
 
A cross-ply laminate of length 2L, width 2W and total thickness h consisting of perfectly bonded 
anisotropic layers is considered within a Cartesian coordinate system. The x-direction is taken as the 
through-thickness direction of the laminate, the y-direction is taken as the axial (longitudinal) direction and 
the z-direction as the in-plane transverse direction.  The bending moments per unit area of loading cross-
section for the axial and transverse directions are defined respectively by 
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The moments are taken about the mid-plane of the laminate which might not correspond to the neutral axis 
if the laminate is unsymmetrical and/or damaged in the region of axial tension. The corresponding effective 
applied axial and transverse stresses are defined respectively by 
 



σ σ= 1
2hW

x, L, z dxdzyy

h

-W

W b g
0zz ,                    σ σΤ = 1

2hL
x, y,W dxdyzz

h

-L

L b g
0zz .                     (2) 

 
The faces of the laminate are assumed to be subject to a uniform applied tensile traction σ t . The 
corresponding effective through-thickness strain ε t  for a laminate is defined by 
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and the effective applied in-plane axial and transverse strains ε  and εT  are defined by 
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where u, v and w are respectively the x, y and z-components of the displacement vector. 
 
In order to represent bending of the laminate for the axial and transverse directions it is assumed that the 
edge boundary conditions for the displacement components v and w are of the form 
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For infinitesimal deformations the radii of curvatures of the surface x = 0 of the deformed laminate are 
given by R1 = 1/ $ε  and R2 = 1/ $εT , so that $ε  and $εT  are respectively the curvatures of the surface x = 0 
of the deformed laminate in the axial and transverse directions.  Substituting the edge boundary conditions 
(5) into (4) and performing the integrations leads to 
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It is clear that ε  and ε  are the axial and transverse strains on the mid-plane of the laminate subject to the 
edge conditions (5). 
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STRESS-STRAIN RELATIONS 
 
It has been shown [6] that the effective stress-strain relations for a damaged cross-ply laminate are of the 
following form 
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which defines the various thermo-elastic constants that characterise the properties of a damaged laminate 
subject to combined in-plane biaxial loading, out-of-plane through-thickness loading and bending. 



 
REDUCED STRESS-STRAIN RELATIONS FOR CONSTRAINED TRIAXIAL LOADING 
 
The damage-dependent stress-strain relations (10) and (11) are treated as a linear system of algebraic 
equations with unknowns M and MT .  For convenience, the following parameters are defined 
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On solving (10) and (11) for M and MT and substituting into the remaining damage-dependent stress-strain 
relations (7-9), the following reduced stress-strain relations are derived of the same form as those for a 
cross-ply laminate subject only to triaxial loading, without shear or bending  
 

~ $
$ $ $

$
$ $ $ ~

~
~

~
~

~ε ε
ν

ε δ ε
η

ε δ ε
σ ν

σ
ν

σ + α ∆t t
a

T T
t

T A
t

t

a

A

t

T
T tE E E

T= + + + + = − −
Λ Λ

 ,                           (13) 

~ $
$ $ $

$
$ $ $

~
~ ~

~
~

~ε ε
ν

ε δ ε
η

ε δ ε
ν

σ
σ ν

σ + α ∆= + + + + = − + −A
T T

A
T A

a

A
t

A

A

A
T AE E E

T
Λ Λ

 ,                        (14) 

~ $
$ $ $

$
$ $ $

~
~

~
~ ~

~ε ε
ν

ε δ ε
η

ε δ ε
ν

σ
ν

σ
σ

+ α ∆T T
T

T T
T

T A
t

T
t

A

A

T

T
TE E E

T,= + + + + = − − +
Λ Λ

                         (15) 

 
where the reduced strains ,  and  can be interpreted as strains for a damaged laminate, subject to 
triaxial loading and constrained so that bending strains are zero, and where the reduced thermoelastic 
constants are defined by  
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The corresponding reduced stress-strain relations for an undamaged laminate are written: 
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where a superscript ‘o’ denotes that the strains and laminate properties refer to their values for the 
undamaged state of the laminate.  
 
FUNDAMENTAL INTER-RELATIONSHIPS BETWEEN THERMO-ELASTIC CONSTANTS 
 
By considering the conditions for ply crack closure during uniaxial loading in the axial, transverse and 
through-thickness directions, it can be shown [7] that many inter-relationships between the thermoelastic 
constants of a damaged laminate can be derived.  First of all define 
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It has been shown [7] that the thermo-elastic constants for a damaged laminate are related to those of the 
corresponding undamaged laminate according to the following simple relations 
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where the constants , k and k1 ′k  are easily obtained from the geometry and ply properties of the 
undamaged laminate.  The results (20-22) indicate that the degradation of all the thermoelastic constants of 
a damaged laminate arising from ply cracking in the 90o plies can be characterised by a single parameter Φ  
that is defined at the macroscopic laminate level by (19). 
 
GIBBS FREE ENERGY FOR A CRACKED LAMINATE SUBJECT TO MULTI-AXIAL BENDING 
 
It has been shown [7], for the case of uniform ply crack densities in one or more of the 90o plies of the 
laminate, that the Gibbs free energy (equivalent to the complementary energy) per unit volume of laminate 
(averaged over the region V occupied by the laminate) may be expressed in the form 
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It should be noted that the stress-strain relations (7-11) for a damaged laminate may be obtained from (23) 
by differentiating with respect to .  It has been shown [7] that, on using (19-22) the 
complicated result (23) can be reduced to the simple form 

σ σ σt T M and M, , , T

 

g g k k0 t T
c− = − ′ + + − − +

Φ
σ σ σ σ

2
2

0F FT
o

T
o($ , $ ) ($ , $ ) ,ε ε ε ε                                   (24) 

 
where g  is the value of  0 g for an undamaged laminate, σ c is the crack closure stress for uniaxial in-plane 
loading constrained so that there is no bending, and where 
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PREDICTING DAMAGE FORMATION 
 
Consider the special case where, during the formation of every ply crack, the fracture energy for ply crack 
formation has a unique value 2γ .   The first objective is to determine the conditions for which it is energetically 
favourable for an array of equally spaced ply cracks having density ρ0  to form quasi-statically in an undamaged 
laminate subject to fixed applied loads and temperature. For a macroscopic region V of the laminate, energy 
balance considerations and the fact that kinetic energy is never negative, lead to the criterion for crack formation 
having the form [8] 
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where the energy absorbed in a macroscopic volume V of laminate by the formation of the new ply cracks is 
given by 
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In (27) the parameter Γ denotes the energy absorbed per unit volume of laminate during the formation of new 
ply crack surfaces in the 90o plies that have led to the initial damage state denoted by the ply crack density ρ0 , 
and  is the total thickness of the 90h( )90 o plies in which the ply cracks have formed.  The corresponding 
change of Gibbs free energy in the region V of the laminate is 

∆G g g dV V g
V

= − = − gz 0 0 .                                                    (28) 

In (28) g denotes the Gibbs free energy per unit volume when the damage in the laminate is characterised by the 
ply crack density ρ , and g0 o denotes the corresponding value of  g  in the undamaged state.   It follows from (24) 
that 
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It then follows using (26-29) that ply crack formation is governed by the inequality 
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It is emphasised that the approach described above does not provide any information that indicates how the 
thermo-elastic constants depend upon ply crack density. A detailed stress analysis is required to provide this 
information (see [6]).   Progressive ply crack formation can be analysed in a very similar way as described in 
[7]. 
 



CONCLUSIONS 
 
The methodology that has been described for the prediction of ply crack formation in some or all of the 90o 
plies of a multiple-ply cross-ply laminate subject to combined in-plane biaxial loading, out-of-plane 
through-thickness loading and bending about two orthogonal axes, and thermal residual stresses, has the 
following properties: 
• the analysis is exact within the assumptions made, 
• the stress-strain relations for a damaged laminate may be obtained by differentiating the Gibbs free 

energy with respect to the loading parameters, and the form of the stress-strain relations is identical to 
that for undamaged laminates, 

• the consideration of ply crack closure conditions leads to the important result that the degradation of the 
properties of the thermo-elastic constants of the laminate is governed by a single parameter Φ  that is 
dependent only on the axial moduli of the laminate in both the damaged and undamaged states, 

• the form of the property degradation relations enables the complex expression for the Gibbs free energy 
of a damaged laminate to be written in a simple form, 

• the results enable the derivation of a relatively simple criterion for the prediction of the loading and 
thermal conditions that are energetically favourable for ply cracks to form in some or all of the 90o plies, 

• the ply crack formation criterion may be used to develop a methodology for the prediction of 
progressive ply crack formation during loading. 
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