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ABSTRACT 
 
Bridged crack models using beam theory formulation have proved to be effective in the modeling of 
quasistatic delamination crack growth in through thickness reinforced structures.  In this paper, we 
model dynamic crack propagation in these structures with the beam theory formulation. Steady state 
crack propagation characteristics unique to the dynamic case are first identified. Dynamic crack 
propagation and the energetics of steady state dynamic crack growth for a Double Cantilever beam 
(DCB) configuration loaded with a flying wedge is examined next. We find that steady state crack 
growth is attainable for this loading configuration provided certain conditions are satisfied. 
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INTRODUCTION 
 
Through thickness reinforcement of various kinds, including stitched or woven continuous fiber 
tows and metallic or fibrous short rods, has been developed to address the delamination problem in 
structural composite laminates.  Substantial experimental evidence shows that through thickness 
reinforcement dramatically alters the delamination characteristics for the better under both static and 
dynamic loading conditions.  For static loading, a fundamental theory based on observations of 
essential mechanisms is now mostly in place [1-6].  The mechanics of crack bridging by the through 
thickness tows have been mapped out, with governing length scales and material parameters 
identified [1-6].  However, equivalent fundamental knowledge and models for dynamic delamination 
do not exist. 
 
This paper deals with the delamination mechanics for through thickness reinforced structures under 
dynamic crack propagation conditions.  A beam theory formulation is adopted and certain crack 



propagation characteristics are identified for mode I conditions. In the next section, we examine the 
energetics of crack growth for a through thickness reinforced DCB specimen loaded by a flying 
wedge.  The double cantilever beam (DCB) specimen loaded dynamically by a flying wedge offers a 
relatively simple experimental approach to analyzing the mode I dynamic delamination problem. 
Regions of stable crack growth as a function of the material properties of the through thickness 
reinforcement, the size of the DCB specimen and the velocity of the wedge have been identified. 
 
Beam Theory Formulation and Solution Characteristics: 
For a beam element, the equations of motion are: 
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where u(x,t) and w(x,t) are the in-plane and transverse displacements of the neutral plane 
respectively,  φ(x,t) is the clockwise rotation of the cross-section, t is the time variable, N is the axial 
force, Q is the shear force, M is the bending moment, 2h is the total thickness of the DCB specimen, 
B is the width of the specimen, ρ is the density, I (= Bh3/12) is the moment of inertia and p(w,t) is 
the bridging traction corresponding to the opening mode. In this work, the time dependent bridging 
traction p corresponding to the opening mode is assumed to depend only on the transverse 
displacement w. In the absence of an axial force N, u = 0. 
 
For a Timoshenko beam, the equations for steady state motion can be reduced to [7]: 
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where X = x – v t  , Evcl /22 ρ= , EGR /κ= , v is the (constant) steady state velocity, G and E are 
the shear modulus and the Young’s modulus of the laminate and the dimensionless shear coefficient 
κ=5/6 for a beam with rectangular cross section. For steady state dynamic delamination, the velocity 
v is the delamination crack tip velocity.  
 
For an Euler-Bernoulli (E-B) beam, where both shear deformation and rotational inertia are ignored, 
the equation for steady state motion reduces to a simple form given by: 
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Let us now consider a linear bridging law of the following type to represent the bridging action of 
the through thickness reinforcement:  

wpp 30 β+=    (4) 
The linear law particularizes to the Dugdale law 0pp = (for 03 =β ) and to the proportional linear 

law wp 3β=  (for 0p0 = ).   In the results that follow, we non-dimensionalize the variables by the 
laminate thickness h ( Whw ≡ , Uhu ≡  and ξhX ≡ ). Thus, the transverse displacement obeys:  
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For Timoshenko beam:    
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For Euler-Bernoulli (E-B) beam: 
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The general solution to Eqn. 5 is: 
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There are three regimes to the solution behaviour that are independent of the boundary conditions, 
and they have been identified below ( Note: S = β3 h / (12 κ G) ): 
• Case 1: β2 < 0 and β4 > 4b2  =>  Exponential behavior 
- For Timoshenko beam, this is true provided: 
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- For the E-B beam, the above condition is never satisfied.  
• Case 2: β2 > 0 and β4 > 4b2  =>  Oscillatory and non-decaying behavior 
- For Timoshenko beam, this is true provided: 
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- For the E-B beam, this condition is satisfied when: RS2E/v2 ≥ρ           (8b.2) 
• Case 3: β4 < 4b2  =>   Oscillatory with exponential decay behavior 
- For the Timoshenko beam, this is true when: 
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-       For the E-B beam, this is true when: RS2E/v2 <ρ   (8c.2) 
 



The conditions determined above give us insight into when dynamic effects can significantly alter 
the mechanisms of deformation and the resultant bridging phenomena. For instance, if the crack tip 
velocity exceeds the condition prescribed in Eqn. 8a, oscillatory displacement fields will be 
introduced in the wake of the crack, and these multiple oscillations could lead to crack face 
interpenetration. When such oscillations are present, the mechanics of bridging and the efficacy of 
through thickness bridging ligaments on the energetics of crack growth will be considerably altered. 
For example, stick-slip propagation modes would appear to be possible, as contacting fracture 
surfaces bounce.  The complex details of such a possibility will be considered elsewhere.  Here, we 
model the arms of the DCB specimen as an EB beam and study propagation characteristics up to the 
point of fracture surface contact, which is a simpler problem. (Constants β, b and d are given in 
Eqn.6b) 
 
Wedge-Loaded Double Cantilever Beam 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic of through thickness reinforced DCB specimen loaded with a flying wedge 
 
The double cantilever beam (DCB) specimen loaded dynamically by a flying wedge, of constant 
velocity v, offers a relatively simple experimental approach to studying the mode I dynamic 
delamination problem (Figure 1).  The test is especially attractive for studying the bridging effects 
supplied by through-thickness reinforcement (e.g., stitches or rods) in laminates. In figure 1, 2α is 
the wedge angle, l is the distance between the wedge and the crack tip and a0 is the length of the 
bridging zone. In non-dimensional form, Lhl ≡ , and 00 Aha ≡ .  The role of the bridging on the 
crack energy release rate is determined in this section.  We assume that the crack propagates under 
steady state conditions and confirm the possibility of steady state propagation by finding consistent 
solutions.  Further, we assume the bridging zone size is invariant and translates with the crack tip.  
 
For the unbridged portion, the deflection profile ( uu Whw ≡ ) is obtained by setting b = d = 0.  
Therefore: 
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The relevant boundary conditions are: 
0)0( ==ξW , 0)0(' ==ξW , αξ −=−= )(' LWu , 0)('' =−= LWu ξ .                   (10) 

The governing Eqn. 9 together with the boundary conditions (10) and the continuity conditions at the 
end of the bridging zone ( 0A−=ξ ) will determine the deflection profile of the beam.  Note that the 

bridging zone length (A0) will be dictated by the critical crack opening displacement ( cc Whw ≡ ) 

required for failure of the bridging ligament.  The crack energy release rate ( TotalG ), as determined 
through the total energy balance is: 
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where Uext is the work done by the applied load, Us is the strain energy, Uk is the kinetic energy, B is 
the uniform width of the DCB specimen, and a is the crack length.  For steady state crack extension 
a = vt, where v is the crack velocity and t is time.  For the DCB specimen loaded with a flying 
wedge this reduces to: 
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In addition, by application of the dynamic J-integral, the energy released at the crack tip is related to 
the bending moment M by [8]: 
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Comparing GTotal and GTip for the displacement fields derived for the linear bridging law, one finds 
that 
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where ∆Gb represents the work that must be done against the bridging ligaments along the bridged 
zone.  This result is identical to that for the quasi-static case for small scale bridging conditions.  
Since there is no rate dependence to the bridging law, it is not surprising that the small scale bridging 
limit relationship is obeyed.   
 
Since we limit our analysis to small scale bridging, tow failure must occur in the wake of the crack. 
Small scale bridging is ensured provided the displacement profile monotonically increases within the 
bridging zone from the crack tip and the pull-out required for tow failure is less than the maximum 
crack opening displacement within the bridging zone. This condition determines a criterion for the 
maximum allowable bridging zone length, maxA , which is obtained by solving 

0/)A(W max =∂−=∂ ξξ .  Therefore, if max0 AA ≤ , then ))A(W(WW maxcriticalc −=≡≤ ξ , and hence 
small scale bridging condition is ensured.   
 
Detailed calculations of the deflection profile, the crack energy release rate and the maximum 
allowable bridging length can be computed with the formalism presented above for both the Dugdale 



bridging law and the proportional bridging law. For instance, when the bridging ligaments obey the 
Dugdale bridging law, steady state crack propagation with small scale bridging is provided 

max0 AA ≤ , where maxA  is given by: 
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and where Lβ=λ , λ≡ /dD ,  and L/AÂ maxmax ≡ . Regions of steady state stable crack growth 
under small scale bridging condition can thus be deduced as a function of the material properties of 
the through thickness reinforcement, the size of the DCB specimen and the velocity of the wedge. 
 
CONCLUSIONS 
 
The dynamic delamination cracking behavior and the energetics of crack growth in through 
thickness double cantilever beam (DCB) specimens has been analyzed. The role of bridging by 
stitches or rods in dynamic crack growth was computed by solving the bridged crack problem within 
the framework of beam theory. For steady state crack growth conditions, different regimes of the 
solution behavior have been identified which would correspond to different crack propagation 
characteristics.  Regions of steady state crack growth under small scale bridging condition can be 
deduced as a function of the material properties of the through thickness reinforcement, the size of 
the DCB specimen and the velocity of the wedge. This provides guidelines for design of experiments 
to probe the efficacy of bridging on improving the dynamic fracture toughness of through thickness 
reinforced structures. 
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