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ABSTRACT

Bridged crack modes usng beam theory formulation have proved to be effective in the modding of
qQuasdatic ddamination crack growth in through thickness reinforced dructures. In this paper, we
modd dynamic crack propagetion in these sructures with the beam theory formulation. Steady deate
crack propagaion characterigics unique to the dynamic case ae firg identified. Dynamic crack
propagation and the energetics of deady date dynamic crack growth for a Double Cantilever beam
(DCB) configuretion loaded with a flying wedge is examined next. We find that Seedy Sate crack
growth is atainable for thisloading configuration provided certain conditions are satisfied.
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INTRODUCTION

Through thickness reinforcement of various kinds induding ditched or woven continuous fiber
tows and metdlic or fibrous short rods, has been developed to address the ddaminaion problem in
dructurd compodte laminates — Subdtantid experimenta  evidence shows that through thickness
reinforcement dramaticdly dters the ddamination characterigtics for the better under both datic and
dynamic loading conditions For ddic loading, a fundamentd theory based on observations of
essntia mechaniams is now madly in place [1-6]. The mechanics of crack bridging by the through
thickness tows have been mapped out, with governing length scdes and maerid parameters
identified [1-6]. However, equivdent fundamentad knowledge and modds for dynamic ddamination
do not exist.

This pgper deds with the ddaminaion mechanics for through thickness reinforced dructures under
dynamic crack propagation conditions A beam theory formulation is adopted and certain crack



propagation characteridics are identified for mode | conditions. In the next section, we examine the
energetics of crack growth for a through thickness reinforced DCB specimen loaded by a flying
wedge. The double cantilever beam (DCB) specimen loaded dynamicaly by a flying wedge offers a
rddivdy smple experimenta goproach to andyzing the mode | dynamic ddamination problem.
Regions of dable crack growth as a function of the materid properties of the through thickness
reinforcement, the Sze of the DCB specimen and the vel ocity of the wedge have been identified.

Beam Theory Formulation and Solution Characterigtics
For abeam dement, the equaionsof motion are:
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where u(x,t) and w(x,t) ae the inplane and transverse diglacements of the neutrd plane
respectively, f(xt) is the clockwise rotation of the crosssection, t is the time variddle, N is the axid
force, Q is the shear force, M is the bending moment, 2h is the totd thickness of the DCB specimen,
B is the width of the specimen, r is the density, | (= Bh®/12) is the moment of inetia and p(wt) is
the bridging traction corresponding to the opening mode. In this work, the time dependent bridging
traction p corregponding to the opening mode is assumed to depend only on the transverse
displacement w. In the absence of an axid forceN, u= 0.

For a Timoshenko beam, the equations for steady state motion can be reduced to [7]:
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whereX = x—vt, ¢?=rVv*/E, R=kG/E, visthe (consant) steedy State velocity, G and E are
the shear modulus and the Young's modulus of the laminate and the dimensonless shear coefficient

k=5/6 for a beam with rectangular cross section. For steady date dynamic ddamindtion, the veocity
Vv isthe ddamination crack tip velodity.

For an Eule-Bemoulli (E-B) beam, where both shear deformation and rotationd inertia are ignored,
the equation for Seady Sate mation reduces to asmple form given by:
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Let us now condder a linear bridging law of the following type to represent the bridging action of
the through thickness renforcement:

P =p,+bsw 4)
The linear law particularizes to the Dugdde lawv p = p, (for b; =0) and to the proportiona linear
lav p = byw (forp, =0). In the results that follow, we non-dimendondize the variables by the
laminate thicknessh (w° hw, u° hU and X ° hx ). Thus, the transverse displacement obeys:
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For Euler-Bernoulli (E-B) beam:
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The generd solutionto Egn. 5is
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There are three regimes to the solution behaviour thet are independent of the boundary conditions,
and they have been identified below (Note: S= bz h/ (12 kG) ):

Cael: b?<0and b*>4b? => Exponentid behavior
- For Timashenko beam, thisistrue provided:
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- For the E B beam, the above condition is never stisfied.

Cae2. b?>0and b*>4b? => Ogillaory and non-decaying behavior
- For Timoshenko beam, thisistrue provided:
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- For the & B beam, this condition is sttisfied when: rv?/ E3 2,/SR (8h.2)

Cae3: b*<4b® => Ogiillaory with exponentia decay behavior
- For the Timoashenko beam, thisis true when:

3(S(- ¢?) - ¢)* < S(1- cA)(R- &) (8c.1)
For the EB beam, thisistruewhen: rv?/ E < 2/8 R (8c.2)



The conditions determined above give us indght into when dynamic effects can ggnificantly dter
the mechaniams of deformation and the resultant bridging phenomena. For indance, if the crack tip
velodity exceeds the condition prescribed in Egn. 8a, ostillatory displacement fidds will be
introduced in the wake of the crack, and these multiple oscillations could lead to crack face
interpenetration. When such oscillations are presant, the mechanics of bridging and the efficacy of
through thickness bridging ligaments on the energetics of crack growth will be condderably dtered.
For example, gick-dip propagation modes would gppear to be posshle, as contacting fracture
asurfaces bounce.  The complex details of such a posshbility will be conddered dsewhere. Here, we
modd the ams of the DCB specimen as an EB beam and study propagation characteridics up to the
point of fracture surface contact, which is a smpler problem. (Condants b, b and d are given in
Egn.6b)
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Figure 1. Schematic of through thickness renforced DCB specimen loaded with aflying wedge

The double cantilever beam (DCB) specimen loaded dynamicdly by a flying wedge, of condant
vdodty v, offers a rdaivdy smple expeimentd gpproach to sudying the mode | dynamic
delamination problem (Figure 1). The test is egpedidly dtractive for sudying the bridging effects
supplied by through-thickness reinforcement (eg., ditches or rods) in laminates. In figure 1, 2a is
the wedge angle, | is the distance between the wedge and the crack tip and &g is the length of the
bridging zone. In nondimengond form, | °h L, and a,°® h A,. The roe of the bridging on the
crack energy release rate is determined in this section. We assume that the crack propagates under
deady date conditions and confirm the posshility of seady Sate propagetion by finding consstent
solutions. Further, we assume the bridging zone Sze isinvariant and trandates with the crack tip.

For the unbridged portion, the deflection profile (w, © hW,) is obtained by setting b = d = 0.
Therefore
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The rdlevant boundary conditions are:

WX =0)=0,W (x=0)=0,W,(x =-L)=-a,W,/(x=-L)=0. (10)

The governing Egn. 9 together with the boundary conditions (10) and the continuity conditions a the
end of the bridging zone (x =- A,) will determine the deflection profile of the beem. Note that the

bridging zone length (Ao) will be dicteted by the criticdl crack opening displacement (w, © hW,)

required for falure of the bridging ligament. The crack energy rdease rate (G, ), @ determined
through thetotal energy baanceis
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where U is the work done by the gpplied load, Us is the drain energy, Uy is the kindtic energy, B is
the uniform width of the DCB specimen, and a is the crack length. For steedy dtate crack extension
a = vt, where v is the crack velocity and t is time For the DCB specimen loaded with a flying
wedge this reduces to:
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In addition, by gpplication of the dynamic Jintegrd, the energy released a the crack tip is rdaed to
the bending moment M by [8]:
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Comparing Grota and Grip for the displacement fields derived for the linear bridging law, one finds
thet

GTip =

W,

where DGy, represents the work that must be done againg the bridging ligaments dong the bridged
zone. This result is identicd to that for the quas-datic case for samdl scde bridging conditions,
Since there is no rate dependence to the bridging law, it is not surprigng thet the smal scale bridging
limit relationship is obeyed.

Since we limit our andyss to smdl scde bridging, tow falure must occur in the wake of the crack.
Smdl scde bridging is ensured provided the displacement profile monotonicdly increeses within the
bridging zone from the crack tip and the pull-out required for tow falure is less than the maximum
crack opening displacement within the bridging zone This condition determines a criterion for the
maximum  dloweble  briogng  zone length, A, , Wwhich is obtaned by solving
TW(Xx =- A )/ TIx =0. Theefore if Ay E£A,,, then W, EW_ ;.0 (° W(X = - A, ), and hence
amd|l scae bridging condition is ensured.

Detaled cdculaions of the deflection profile, the crack energy rdesse rate and the maximum
dlowable bridging length can be computed with the formalism presented above for both the Dugdde



bridging lawv and the proportiond bridging law. For ingance, when the bridging ligaments obey the
Dugdde bridging law, deady dae crack propagation with smdl scde bridging is provided

Ay EA, , Where A isgivenby:

- 21 (Cos(l ) - Cos(l (1- A..))) + 21 DA_ (Cos(l (1- A ))- 1) 15
+D (Sn(l (1- 2A)) + Sn(1 Ay ) ) + D( Sn(l Ay )- Sn(1)) =0
and where | =bL, D°d/l , axd A_ °A_ /L. Regions of steady Sate stable crack growth

under smal scale bridging condition can thus be deduced as a function of the materid properties of
the through thickness reinforcement, the Sze of the DCB specimen and the vel ocity of the wedge.

CONCLUSIONS

The dynamic ddaminaion cracking behavior and the energetics of crack growth in through
thickness double cantilever beam (DCB) specimens has been andyzed. The role of bridging by
ditches or rods in dynamic crack growth was computed by slving the bridged crack problem within
the framework of beam theory. For seedy Sate crack growth conditions, different regimes of the
solution behavior have been identified which would correspond to different crack propageation
chaacteridics  Regions of deady dae crack growth under smdl scde bridging condition can be
deduced as a function of the materid properties of the through thickness renforcement, the sze of
the DCB specimen and the velodity of the wedge. This provides guiddines for desgn of experiments
to probe the efficacy of bridging on improving the dynamic fracture toughness of through thickness
reinforced Sructures.
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