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ABSTRACT

Monotonic and cyclic loading of a plane strain mode I crack under small scale yielding are analyzed using
discrete dislocation dynamics. The dislocations are all of edge character and are modeled as line singularities
in an elastic solid. At each stage of loading, superposition is used to represent the solution in terms of the stress
and displacement fields for edge dislocations in a half-space and a non-singular complementary solution that
enforces the boundary conditions, which is obtained from a linear elastic, finite element model. The lattice
resistance to dislocation motion, dislocation nucleation, interaction with obstacles and annihilation are incor-
porated into the formulation through a set of constitutive rules. A cohesive surface ahead of the initial crack tip
is employed, with either reversible or irreversible relations between the opening traction and the displacement
jump in order to simulate cyclic loading in a vacuum and in an oxidizing environment, respectively. It is found
that crack growth can occur under cyclic loading conditions above a certain threshold value of AK; this value
is higher in the case of the reversible cohesive law, in line with experimental observations.
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INTRODUCTION

The interaction between plastic flow and the actual process of material separation plays an important role in
setting the fracture response of structural materials under both monotonic and cyclic loading conditions. In
particular, when structural components are subject to high frequency, low amplitude loading, even a typical
near-threshold crack growth rate of 10~ mm/cycle prompts designs to be based on the fatigue threshold,
A Ky, of the metal. While threshold values for various metals are well documented, A Ky, values are known
to be sensitive to the microstructure and particularly environmental conditions [1, 2]. Under near-threshold
conditions, plastic zone sizes are small and discrete dislocation effects become prominent.

Previous simulations of cyclic crack growth using discrete dislocation models have been carried out, e.g.
(3, 4], to gain insight into the mechanisms involved. Such models are specifically geared to cyclic loading,
with dislocations nucleated from the crack tip being allowed to glide on specific slip planes around the crack
tip. Thus, crack growth in [3, 4] is taken to be deformation controlled in that the crack is assumed to grow by
emitting dislocations from the crack tip. In these works, environmental effects are simulated by reducing the
stress intensity factor at which a dislocation is emitted from the crack tip.

In this paper, we carry out analyses of crack growth under both monotonic and cyclic loading conditions
using the same discrete dislocation framework as in [5, 6]. The fracture properties of the material are embedded
in a cohesive surface constitutive relation, and crack initiation and crack growth emerge as natural outcomes of
the boundary value problem solution. As emphasis is placed on the environmentally sensitive near-threshold
fatigue behavior, both reversible and irreversible cohesive traction-separation relations are employed to inves-
tigate cyclic loading in a vacuum and in an oxidizing environment, respectively. The main focus of this study
is to ascertain whether the dislocation rearrangement due to cyclic loading can induce crack growth at levels
of the applied stress intensity factor lower than needed for crack growth to occur under monotonic loading
conditions.



THEORY

The formulation and numerical method follow that in [5, 6] where further details and additional references are
given. We consider an infinitely long crack in a two-dimensional single crystal subjected to far field mode I
loading, see Fig. 1a. The orientation of the crack is taken to be symmetric to the slip planes in the crystal, so
that we need to consider only half of the crystal. Assuming small-scale yielding conditions, a process window
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Figure 1: (a) Mode I crack problem with the imposed boundary conditions (b) Irreversible cohesive law.

is centered around the initial crack tip position in which dislocations live on a set of slip systems. The rest of the
crystal remains elastic with isotropic properties, specified by the shear modulus x4 = 26.3 GPa and Poisson’s
ratio v = 0.3. Inside the process window, we assume three slip systems, two with planes at +60° from the
crack plane zo = 0 and one parallel to this plane. The slip plane spacing is 86b. Only edge dislocations are
considered, with Burgers vector b = 0.25nm.

Initially, the crystal is assumed to be free of mobile dislocations, but to contain a random distribution of
dislocation sources and point obstacles. The sources mimic Frank-Read sources and generate a dislocation
dipole when the magnitude of the shear stress exceeds a critical value of 7,,c = 50MPa during a period of
time ¢y, = 10ns. The obstacles, which could be small precipitates or forest dislocations, pin dislocations
and will release them once the shear stress attains the obstacle strength 7., = 150MPa. Annihilation of two
dislocations with opposite Burgers vector occurs when they approach each other within a critical annihilation
distance L, = 6b. We present calculations for a material with a source and obstacle density pg,. = 60 / pum?
and pobs = 290/pm?, respectively in the process region.

Loading is prescribed in terms of displacements corresponding to the isotropic elastic mode I singular field
remote from the crack tip. There is a single cohesive surface [7] that extends over a distance z. in front of the
initial crack (the constitutive equations of the cohesive surface are detailed later in the paper). Ahead of the
cohesive surface, symmetry conditions are prescribed. At each time step, an increment of the mode I stress
intensity factor K;At is prescribed. At the current instant, the stress and strain state of the body is known, and
the forces on all dislocations can be calculated. On the basis of these forces we update the dislocation structure,
which involves the motion of dislocations, the generation of new dislocations, their mutual annihilation, their
pinning at obstacles, and their exit into the open crack. After this, the new stress and strain state can be
determined. For this purpose, we use superposition [8],

U; = Uy + U; , 6,']' = éz‘j -+ Cij y O'i]' = 5’,']' + O’,‘j . (1)
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Figure 2: (a) Schematic of the applied stress intensity factor as a function of time (b) Applied stress intensity
factor K;/K, versus crack extension Aa for monotonic loading with the reversible and irreversible cohesive
surface laws.

The (") fields are the superposition of the singular fields of the individual dislocations in their current configu-
ration while the (*) fields represent image fields that correct for the actual boundary conditions. For the former
we use the fields of an edge dislocation in a half-space [9], with the traction-free surface corresponding to the
crack plane z, = 0.

The sum of the (7) and the (") fields in (1) gives the solution that satisfies all boundary conditions. Since the
(") fields are smooth in the region of interest, the boundary value problem for them can conveniently be solved
using a finite element method. The size of the region analyzed is 1000#m x 500xm and a finite element mesh
of 120 x 100 bilinear quadrilateral elements is used. The process window in Fig. la is specified by L, = 10um
and h, = 12.5um and is discretized with a fine mesh of 80 x 80 quadrilateral elements.

With the decomposition (1), the Peach-Koehler force f*) acting on the kth dislocation is given by

O = (ézj + 3o+ Eﬁf)) b @)
m#k
Here, nz(-k) is the slip plane normal, b;k) is the Burgers vector and Eg) 1s the image field on dislocation k due to
the traction-free surface, i.e. the difference between the half-space and infinite medium fields. The direction
of the Peach-Koehler force is in the slip plane and normal to the dislocation line. The rules for dislocation
nucleation and motion are based on this force as the driving force. Dislocation motion is assumed to occur
only by glide with no cross slip. The magnitude of the glide velocity v(*) of dislocation k is taken to be linearly
related to the Peach-Koehler force f*) through the drag relation f*) = By(®). The value for B is taken as
B = 10~*Pas, which is representative for aluminum [10].
The centerpiece of the present approach is the inclusion of both reversible and irreversible cohesive traction-
displacement relations to simulate cyclic loading in non-oxidizing (vacuum) and oxidizing environments, re-
spectively. We start by considering monotonic opening of the crack. The opening is resisted by cohesion at



the atomistic scale and we assume that the normal cohesive traction 77, has the universal binding form [11],

Tn(An) = eo’max‘?‘E exp(_%) y (3)

where 4, is the total separation of the cohesive surface, A, = 2uy(zy = 0), and T, is the traction normal
to the cohesive surface. As the cohesive surface separates, the magnitude of the traction increases, reaches
a maximum and then approaches zero with increasing separation. In a vacuum, there is no oxidation of the
newly formed surface and it is expected that this relation is followed in a reversible manner. However, even
in normal atmospheric conditions the newly formed surfaces oxidize and the cohesive law will not follow the
above universal binding relation in a reversible manner. We model the effect of the formation of the oxide layer
and the subsequent surface contact during unloading by specifying unloading from and reloading towards the
monotonic cohesive law to occur according to the incremental relation
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An example of a typical T,,—A,, path for the irreversible cohesive law is shown schematically in Fig. 1b.
The parameters used in this study are omax = 0.6 GPa and §,, = 4b giving a work of separation ¢,, =
€0maxOn Of 1.63 J/m?. The work of separation can be related to a reference stress intensity factor K, defined

by
| E¢n
Ko=\l1—03 (5)

where for the material parameters here K, = 0.358 MPay/m. Note that crack growth in an elastic solid with
the given cohesive properties takes place at K;/K, = 1. The value of 0., used is about a factor of four
smaller than would be appropriate for aluminum. This small value of the strength was used for numerical
convenience, since the length scale over which large gradients occur is proportional to (E /0 max)dy.

RESULTS

In the calculations presented here the applied stress intensity was varied with time between K ;, and K ., as
shown schematically in Fig. 2a. The calculations were carried out for a loading rate of K; = 100GPay/m/s.
This rather high loading rate was chosen to reduce the computer time needed for the crack growth calcula-
tions because resolving the dislocation dynamics requires a small time step of At = 0.5ns. For comparison
purposes, calculations with K; monotonically increasing were also carried out. The monotonic crack growth
behavior with both the reversible and irreversible cohesive laws are approximately the same. Crack growth
initiates at K; /K, =~ 1.0. This is followed by substantial plasticity and a sharp rise in the resistance to crack
growth (Fig. 2b).

The near-threshold fatigue behavior of metals is known to be sensitive to the stress ratio R = K, / K nax.
We present results for R = 0.3, but for various values of A K. First we consider the reversible cohesive surface
law. Figure 3a shows the time evolution of crack growth, Aa, under cyclic loading conditions. For both values
of AKj, there is an initial “burst” of crack growth. Subsequently, for the case with AK;/K; = 1.12 the
behavior settles down to an incremental crack growth of the order of 10~*um/cycle. This corresponds to a
crack growth of about one lattice spacing per cycle and is the commonly used operational definition of the
threshold crack growth rate [1]. However, for the lower value of AK;/K, = 0.98, no cycle-by-cycle crack
growth is seen. Further insight into this behavior is gained by examining the evolution of the dislocation
density (Fig. 3b). For the case with AK; /K, = 1.12 the dislocation density is seen to slowly accumulate with
the number of cycles. On the other hand, with AK; /K, = 0.98, plastic shakedown takes place resulting in no
cycle-by-cycle increase in the dislocation density. Thus, we see that irreversibility of the dislocation motion
above a certain threshold value of AK] results in an evolving dislocation structure with cyclic loading; this
permits the crack to grow to different lengths during different loading cycles.

Next, we consider cyclic loading with the irreversible cohesive law. Figure 4 shows the time evolution
of crack growth with AK;/Ky, = 0.77 and 0.90. We see that incremental crack growth of the order of
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Figure 3: (a) Time evolution of the crack growth and (b) time evolution of the dislocation density for the case
with the reversible cohesive surface law (R = 0.3).
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Figure 4: Time evolution of the crack growth with the irreversible cohesive surface law (R = 0.3).

10~*um/cycle (see inset Fig. 4) occurs in this case at the much lower value of AK;/Ky = 0.77: a close
examination of the inset in Fig. 4 reveals that the incremental crack advance in this case takes place due to a
“spurt” of crack growth which occurs towards the end of every loading cycle. It is these “spurts” that result
in the incremental cycle-by-cycle crack growth. On the other hand, with AK;/K, = 0.90, we are well above
the fatigue threshold and crack growth is accelerating. Further calculations are needed to check whether or not



crack growth settles down to a “steady-state” value. It is worth emphasizing that we get continued crack growth
under cyclic loading at a value of K,,,x at which the crack would have arrested under monotonic loading. This
is best illustrated by the case with AK[/ Ky = 0.90 (K nax/ Ko = 1.29 and K i,/ Ko & 0.39): the crack grows
by about 0.2m after 8 cycles (Fig. 4). However, as seen in Fig. 2b, K;/K; =~ 2.0 is needed for the crack to
grow by that length under monotonic loading conditions.

CONCLUSIONS

Results of plane strain analyses of mode I crack growth under monotonic and cyclic loading conditions have
been presented where plastic flow arises from the motion of large numbers of dislocations. The only dif-
ference between the analyses for monotonic and cyclic crack growth is in the specification of the applied
loading. The material has three slip systems and is initially dislocation free. Dislocation nucleation oc-
curs from Frank-Read sources distributed randomly in the material, with no special dislocation nucleation
from the crack tip. Cyclic loading in a vacuum and in an oxidizing environment are simulated by employ-
ing a reversible and an irreversible cohesive law, respectively. Results have been presented for a stress ratio,
R = (Knin/Kmax) = 0.3: the fatigue threshold was calculated by reducing A K until no cycle-by-cycle crack
growth was obtained. Crack growth rates of about 10~*um/cycle corresponding to typical threshold values
were seen with AK;/K; = 1.12 and 0.707 for the reversible and irreversible cohesive laws, respectively.
Plastic shakedown with no incremental crack growth was observed for A K; lower than these threshold values.
In line with experimental observations we found that the fatigue threshold value was higher in a vacuum than
in an oxidizing environment.

Fatigue was seen to emerge in the simulations as a consequence of the evolution of internal stresses as-
sociated with the irreversibility of the dislocation motion: the dislocation structure and density were different
at the beginning and end of each cycle and it was this that permitted cycle-by-cycle crack growth. Moreover,
continued crack growth under cyclic loading occurred at a value of K, for which the crack would have
arrested under monotonic loading.
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