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ABSTRACT 
 
Crack tip parameters used in nonlinear fracture mechanics are examined using finite element simulations for 
characterizing high temperature crack growth in directionally solidified (DS) Ni-base superalloys. The 
anisotropy in these materials is modeled as orthotropic materials in which the plastic and creep properties are 
different along the longitudinal and transverse directions. The elastic behavior of the material is modeled as 
isotropic. The loading direction is chosen along the longitudinal axis of the grains and the crack is located in 
the transverse plane. The analysis shows that C(t) characterizes the crack tip stress and strain as a function of 
time and also the evolution of the creep zone size and shape during the small-scale creep conditions. This 
leads to the conclusion that the parameters that characterize the crack growth rate in isotropic materials such 
as C* and Ct are also suitable for DS materials for Mode I cracks when the loading axis coincides with one of 
the main material axis.  
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INTRODUCTION 
 
The performance of natural gas-fired gas turbines has steadily improved with the continuous development of 
advanced materials and design concepts for hot gas path components.  The use of directionally solidified 
(DS) superalloy with adequate coatings has significantly improved the limitations inherent to equiaxed 
materials in the areas of oxidation and corrosion resistance, thermal and low cycle fatigue resistance, creep 
resistance and high cycle fatigue resistance [1]. A major aspect of any design or remaining (or residual) life 
assessment methodology for high temperature components is the ability to predict the creep and creep-
fatigue crack growth behavior in these materials. This requires the use of nonlinear fracture mechanics 
concepts.  
Directionally solidified materials by design are anisotropic because grain sizes in the longitudinal direction 
can be on the order of 100 mm and on the order of only a few mm in the transverse and the short transverse 
directions. The tensile and the creep data clearly show significant differences in the plastic and creep 
deformation behavior in the longitudinal and transverse directions. Thus, it is perhaps more accurate to 
represent them as orthotropic materials in which the creep deformation properties in the direction along the 
grain axis differ substantially from the properties in the transverse direction.  
The crack tip parameters currently used for predicting creep and creep-fatigue crack growth are based on the 
assumptions that the material is isotropic. The purpose of this paper is to use finite element simulations to 

 
 
 



explore the applicability and limitations of crack tip parameters such as C*, Ct and C(t) for predicting crack 
growth in DS materials. 
 
CRACK TIP PARAMETERS FOR CREEP CRACK GROWTH 
 
We assume power-law creep behavior and that a cracked body is subjected to a static load under creep 
conditions and the load has been applied for sufficiently long time so that steady-state creep develops over 
the entire remaining ligament. Under these circumstances, the C*- integral is shown to uniquely characterize 
the crack tip stress and strain rates through the Hutchinson-Rice-Rosengren (HRR) fields [2]. The C*- 
Integral is defined as [2]: 
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Where, Γ = a path that originates on the lower crack surface and ends on the upper crack surface enclosing 
the crack tip,  = displacement rate, Tiu& i = components of the traction vector, W* = stress-power density, ds = 
incremental distance along the path, Γ. 
The validity of the C*-integral is limited to extensive steady-state creep conditions.  In practice, this 
condition may not always be realized because components contain stress and temperature gradients and are 
designed to resist widespread creep deformation.  Therefore, it is necessary to derive the crack tip stress 
fields for the conditions of small-scale creep (SSC) and the transition creep (TC). Under SSC, the creep zone 
is restricted to a small region near the crack tip and is much smaller than the length dimensions such as crack 
size and the remaining ligament, and the surrounding material is under elastic conditions. Riedel and Rice 
[3] and Ohji, Ogura and Kubo [4] independently derived the nature of the crack tip stress fields under small-
scale creep conditions as a function of time. The above analysis lends itself to the estimation of the creep 
zone size and transition time, tT, which is the time needed for extensive creep conditions to develop from 
SSC conditions. Riedel and Rice [3] defined the creep zone boundary as the locus of points where time-
dependent effective creep strains equal the instantaneous effective elastic strains in the cracked body. The 
transition time is the time when the small-scale-creep stress fields equal to the extensive steady-state creep 
fields characterized by C*.   
Bassani and McClintock [5] recognized that the crack tip stress fields under SSC can also be characterized 
by a time-dependent C(t)-integral, whose value is determined along a contour taken very close to the crack 
tip. C(t) is same as C* except its value is determined close to the crack tip within a region where the creep 
strains dominate over the elastic strains.  In contrast, the value of C* can be determined along any contour 
which originates at the lower crack surface and ends on the upper crack surface enclosing the crack tip.  
Thus, determining the C(t)-integral requires accurate solutions of stress and strain near the crack tip.  Bassani 
and McClintock [5] further related the value of C(t) with the HRR type stress fields. The validity of the C(t)-
integral is not simply limited to the small-scale creep conditions because C(t) becomes equal to C* for 
extensive steady-state creep with the additional property that its value becomes path-independent.  Hence, 
C(t) can be said to be the amplitude of the HRR field for all conditions ranging from small-scale to extensive 
secondary-state creep and also including the transition creep conditions, in between.  Therefore, to 
investigate time-dependent crack tip stress fields in DS materials, we will focus on the C(t)- integral and its 
value determined along a path taken very close to the crack tip. 
Ct parameter [2] is different from C(t) in that it is uniquely related the stress power dissipation rate and the 
rate of expansion of the creep zone size in the small-scale-creep regime. In the extensive creep regime, Ct, 
C(t) and C* all become identical by definition. The advantage of Ct over C(t) in the small-scale-creep regime 
is that it can be measured at the loading pins while C(t) cannot. Therefore, Ct has been widely used for 
correlating creep crack growth data over a wide range of conditions ranging from small-scale-creep to 
extensive creep [2].  The relationship between Ct and the rate of expansion of the creep zone size, r is given 
by the following equation [2]: 
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Where, K= stress intensity factor, W = specimen width, E = elastic modulus, ν= Poisson’s ratio, F = K-
calibration function, F′ = first derivative of F with respect to (a/W), and β = constant with a value of 

 
 
 



approximately 0.33. The creep zone size in the above equation is referenced to its extent along 90 degrees 
from the crack plane. 
FINITE ELEMENT ANALYSIS OF ORTHOTROPIC MATERIALS 
 
In this study, the DS material is modeled as isotropic elastic and orthotropic creep with different creep 
properties in the longitudinal and transverse directions.  The finite element method is used to investigate the 
development of the creep zone and to calculate the magnitude of C(t) for a stationary crack. 
The orthotropic creep behavior was implemented in the numerical model using Hill’s anisotropic yield 
function.  The anisotropic yield function contains 6 constants for general loading.  If we restrict loading to 
the principal axes, the number of constants can be reduced to three. The loading of the model is applied such 
that the principal axes are coincident with the longitudinal and transverse directions of the directionally 
solidified alloy.  The equivalent deviatoric stress function based on Hill’s anisotropic yield function in 
principal stress space is 
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where, F, G, and H are coefficients associated with the anisotropic creep properties. 
The equivalent steady-state creep relationship is 
 n

cr q~Aε =&  (4)  
Where, ε  is the equivalent steady-state creep rate, A is the equivalent creep coefficient, and n is the creep 
exponent. The constants F, G, and H are determined using the creep coefficients from three uniaxial creep 
tests, one in each of the principal directions.  Substituting the equivalent deviatoric stress for each of the 
uniaxial creep tests yield 
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Where, i =1,2,3, ε  is the steady-state creep rate in the i-direction, Aicr
& i is the creep exponent in the i-

direction, iσ is the ith principal stress, and n is the creep exponent. It is important to note that the use of this 
approach allows for different creep coefficients to accommodate the material anisotropy, but the creep 
exponent must be the same for each direction.   Combining Eq. (3) and Eq. (5) for each of the uniaxial test 
yields the following relationships between the anisotropic creep coefficients and the equivalent creep 
coefficient. 
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By setting A=Ax, the following equations are obtained for F, G, and H 
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A finite element model of a standard compact type (CT) specimen was created. The finite element model is 
2-d, plane strain and consists of 15413 nodes and 4988 8-noded quadrilateral elements, Figure 1.  Crack tip 
elements are used to ensure accurate representation of the stress and strain field at the crack tip.  The use of 
crack tip elements is particularly important in the calculation of C(t) because its value is only valid as the 
dimension of the contour around the crack tip approaches zero.  A detailed figure of the crack tip mesh is 
shown in Figure 2.  A load of 2000 N is applied to the finite element model through the semi-rigid loading 
pins and the a/W ratio is 0.5.  The stress intensity factor for this configuration is 109.2 MPa(m)1/2.  The finite 

 
 
 



element model was analyzed using ABAQUS, which includes the anisotropic creep model based on Hill’s 
function among its standard routines. 
 
RESULTS 
 
Three different finite element models were evaluated for comparison: isotropic (Ax=Ay), orthotropic - 
longitudinal bias (Ay > Ax), and orthotropic - transverse bias (Ax > Ay). The creep coefficient is 1.06x10-14 
MPa-6/hr and the creep exponent is 6 for the isotropic case. Using a load of 2000 N, the corresponding 
transition time is 430 hours for the isotropic case. The coefficients for the orthotropic models are shown in 
Table 1. 

Table 1 – Orthotropic Creep Properties for Finite Element Model 
 

 Ax(MPa-6/hr) Ay(MPa-6/hr) Az (MPa-6/hr) 

Long.  Bias 1.061x10-14 4.897x10-14 1.061x10-14 

Trans. Bias 1.061x10-14 2.290x10-15 2.290x10-15 

 
Figure 3 shows the resulting creep zone at 500 hours for all three finite element models.  In this figure, the 
creep zone is defined as the boundary where the equivalent creep strain is equal to the largest principal 
elastic strain.  The crack tip parameter C(t) was calculated during the finite element simulation.   A plot of 
C(t) versus time for each of the three finite element models is presented in Figure 4.  The most important 
result from this plot is the fact that the value of C(t) approaches a unique value as time increases for the two 
orthotropic cases evaluated.  In the isotropic case, it is well known that C(t) → C* as t→ ∞.  This result 
shows that C(t)- Integral can be used for characterization of crack tip stress under extensive creep conditions 
for DS materials.  
Figure 5 shows the development of the creep zone for the orthotropic – transverse bias (Ax > Ay) case.  The 
results of the analytical study showed the creep zone does in fact grow in a self-similar fashion even with the 
orthotropic creep properties. Figure 6 shows a plot of the creep zone size as a function of time on a log-log 
scale for angles of 90 and 45 degrees from the crack plane. A line of slope of 2/(n-1) = 0.4 for n =6 is plotted 
through the data to compare the numerical results to the analytically predicted slope [2,3]. The good 
agreement between the numerical and analytical values attests to the validity of Ct for uniquely 
characterizing the creep zone expansion rate. This result has significant implications in regard to the use of 
Ct [6] parameter for characterizing the creep crack growth behavior in DS materials. 
 
CONCLUSIONS 
 
Finite element analyses of compact type specimens subjected to sustained load conditions made from 
orthotropic materials with different creep properties along the major axes show that crack tip stress and 
strain fields as a function of time and the evolution of the crack tip creep zone size and shape are 
characterized by the C(t)-Integral. Thus, the foundation has been laid for the use of parameters such as C* 
and Ct for characterizing high temperature crack growth. 
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   Figure 1: Finite Element Model of CT 

Specimen 
Figure 2: Close-Up View of Crack Tip Region in 
Finite Element Model  
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 Figure 3: Boundary of creep zone at t=500hr

for all three finite element models 
Figure 4: Evolution of Creep Zone for Orthotropic –
Transverse Bias Case (t=200,500,1000 hr) 

 
 
 
 

 
 
 



  
 
 Figure 5: Comparison of C(t) vs. Time for each of the three finite element models 
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Figure 6: Plot of Creep Zone Radius vs. Time for angles of  θ = 45° and θ = 90° 
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