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ABSTRACT

This paper presents a method for integrating the element-free Galerkin method (EFGM) with the
traditional finite element method (FEM) for analyzing linear-elastic cracked structures. The EFGM is used
to model material behavior close to cracks and the FEM in areas away from cracks. In the interface
region, the resulting shape function, which comprises both EFGM and FEM shape functions, satisfies the
consistency condition thus ensuring convergence of the method. Numerical examples are presented to
illustrate the integrated EFGM-FEM. The stress-intensity factors predicted by this method compare very
well with all-FEM or all-EFGM solutions. A significant saving of computational effort can be achieved
due to coupling in the proposed method when compared with existing meshless methods.
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INTRODUCTION

In recent years, a class of meshfree or meshless methods, such as the element-free Galerkin method
(EFGM) [1,2], has emerged that demonstrates significant potential for solving moving boundary problems
typified by growing cracks. Although meshless methods are attractive for simulating crack propagation,
the computational cost of a meshless method typically exceeds the cost of a regular finite element method
(FEM). Furthermore, given the level of maturity and comprehensive capabilities of FEM, it is often
advantageous to use meshless methods only in sub-domains, where their capabilities can be exploited to
the greatest benefit. In modeling crack propagation in a complex engineering structure with stiffeners,
connections, welds, etc., it is more effective to apply meshless methods at sites of potential crack growth
and FEM in the remainder of the domain. Therefore, numerical methods need to be developed for
combining meshless and finite element methods.

In this paper, a numerical technique integrating EFGM with the traditional FEM is presented for analyzing
linear-elastic cracked structures. The EFGM is used to model material behavior close to cracks and the
FEM in areas away from cracks. In the interface region, the resulting shape function, which comprises
both EFGM and FEM shape functions, satisfies the consistency condition thus ensuring convergence of
the method. Several numerical examples are presented to illustrate the proposed method.



THE ELEMENT-FREE GALERKIN METHOD

Consider a function u(x) over a domain KΩ ⊆ ℜ , where K = 1, 2, or 3. Let xΩ ⊆ Ω denote a sub-

domain describing the neighborhood of a point K∈ℜx located in Ω. According to the moving least-
squares (MLS) [3], the approximation ( )hu x of u(x) is
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( )Iw x and zero where Ix denotes the coordinates of node I, and N is the total number of meshless nodes.
According to the reproducibility condition,
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Substituting ( )IΦ x in Equation 2 gives,
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INTEGRATED EFGM-FEM

Consider the domain EFGM FEMΩ = Ω ∪ Ω , which comprises two non-overlapping subdomains EFGMΩ and

FEMΩ and boundary bΓ . Depending the location of a point K∈ℜx , the reproducibility condition given

by Equation 3 can be written as follows:

Case 1: If ∈ΩEFGMx and the shape function of all FEM nodes are zero at x,
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Case 2: If EFGM∈Ωx and the shape function of some FEM nodes along boundary bΓ are nonzero at x,
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A node on the boundary between EFGM zone and FEM zone bΓ is treated as an FEM node if its FEM

shape function value at the point x is nonzero or else it is treated as EFGM Node. In this case,
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Case 3: If FEM∈Ωx ,
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where the FEM shape function ( )JN x can be obtained by Lagrange interpolation. Hence, the effective

shape function for integrated EFGM-FEM, denoted by ( )IΦ x� , can be defined as
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The effective shape function ( )IΦ x� strongly depends on the type of basis functions used. In this study,

the fully enriched basis function was used for analyzing cracked structures [1,2].

VARIATIONAL FORMULATION AND DISCRETIZATION

For small displacements in two-dimensional, homogeneous, isotropic, and linear-elastic solids, the
variational or weak form of equilibrium equation is
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where ê is the stress vector, Ç is the strain vector, u is the displacement vector, b is the body force
vector, and t and u are the vectors of prescribed surface tractions and displacements, respectively.
Using the integrated EFGM-FEM method, the displacement field can be approximated by
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where
Ti

J
�c and d are vectors of integrated EFGM-FEM shape functions and nodal parameters

displacements, respectively, and N is the total number of nodal points in Ω. For a single boundary
constraint ( ) ( )i J i Ju g=x x applied at node J in the direction of xi coordinate, when Equations 11 is

invoked, the discretized form of Equations 9 and 10 becomes [2]
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where ( )2 2N N∈ ℜ ×ℜk L is the stiffness matrix and 2ext N∈ℜf is the force vector. When multiple

boundary constraints are enforced, an augmented system of similar linear equation can be developed. The
equilibrium equations can be solved using the method of Lagrange multipliers [1] or transformation
methods [2].



COMPUTATIONAL FRACTURE MECHANICS

Consider a structure with a rectilinear crack of length 2a that is subjected to external stresses. Let KI and
KII be the stress-intensity factors (SIFs) for mode-I and mode-II, respectively. The SIFs can be evaluated
using the domain form of an interaction integral (1,2)M , i.e.,
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where ( )1,2W is the mutual strain energy from the actual mixed mode state for the given boundary
conditions (superscript 1) and the super-imposed near-tip mode I auxiliary state (superscript 2), and q is
another weight function chosen such that it is unity at the crack tip, zero along the boundary of the
domain, and arbitrary elsewhere. Following similar considerations, IIK can be calculated from Equations

13-14, except that the near-tip mode II state is chosen as auxiliary state while computing (1,2)M .

In order to simulate crack growth, the crack-path direction must be determined. There are a number of
criteria available to predict the direction of crack trajectory. In this study, the crack-growth simulation is
based on the maximum circumferential stress criterion [5]. When the values of KI and KII are known, the
direction of crack-propagation can be easily solved using standard numerical procedures. Other criteria,
which are not considered here, can be easily implemented into the proposed method.

NUMERICAL EXAMPLES

Example 1: Stationary Crack under Mixed-Mode
This example involves an edge-cracked plate in Figure 1, which is fixed at the bottom and subjected to far-
field shear stress ∞τ = 1 unit applied on the top. The plate has length L = 16 units, width W = 7 units, and
crack length a = 3.5 units. Figure 2 shows the domain discretization involving 324 uniformly spaced
nodes, some of which are treated as meshless nodes and rest of them are treated as 4-noded quadrilateral
finite elements. The elastic modulus and Poisson's ratio were 30×106 psi and 0.25, respectively. A plane
strain condition was assumed.

Table 1 shows the predicted KI and KII for several values of LEFG/L, where EFGL is defined in Figure 2. The

reference solutions for this problem are: 34 unitsIK = and 4.55 unitsIIK = [6]. The predicted KI and KII

values compare very well with the reference SIF values up to LEFG/L = 6/14. However, the accuracy of
the predicted values deteriorates and oscillates when LEFG/L ≤ 5/14, possibly due to the smaller meshless
zone. Figure 3 plots variation of CPU ratio, defined as the ratio of CPU time using integrated EFGM-
FEM and CPU time using meshless method for the whole domain. It is evident from the plot that CPU
time decreases with decrease in LEFG/L, as expected. Hence combining meshless method with FEM can
significantly reduce computational effort for solving fracture-mechanics problems.

Example 2: Experimental Validation of Crack Propagation
In this example, crack trajectories predicted by the proposed method are compared with the Pustejovsky’s
experimental data [7]. Pustejovsky performed a series of uniaxial tension tests on isotropic Titanium Ti-
6Al-4V plates with oblique center-cracks of length 2a = 13.5 mm (0.53 inch) at γ = 430 and length 2a =
14.2 mm (0.56 inch) at γ = 300. The reported dimensions and material properties of the specimens were:



length, 2L = 304.8 mm (12 inches), width, 2W = 76.2 mm (3 inches), elastic modulus, E = 110 GPa
(16,000 ksi) and Poisson’s ratio, ν = 0.29. A far-field uniaxial tensile stress, σ∞ = 207 MPa (30 ksi) was
applied on the top and the bottom of the specimen during meshless analysis. Figures 4 and 5 show the
dimensions of the specimen and the meshless discretization, respectively. The domain discretization
involves 1124 nodes, some of which are treated as meshless nodes and rest of them, are treated as 4-noded
quadrilateral finite elements. A plane strain condition was assumed.

Figures 6 and 7 show the comparison of the predicted crack trajectories by using meshless method for the
whole domain and by the proposed method when 11 16 and 7 16EFGL L =/ / / , with the experimental data

in a small region ABCD (see Figure 5) surrounding the crack. The results in Figure 6 corresponds to 2a =
13.5 mm (0.53 inch) and γ = 430 and the results in Figure 7 corresponds to 2a = 14.2 mm (0.56 inch) and γ
= 300. The predicted crack trajectories by the proposed method are in good agreement with all-meshless
results or the experimental data.
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CONCLUSIONS

An integrated meshless-finite element method was developed for analyzing linear-elastic cracked structures
subject to mixed-mode loading conditions. The EFGM was used to model material behavior close to
cracks and the FEM in areas away from cracks. In the interface region, the resulting shape function, which
comprises both EFGM and FEM shape functions, satisfies the consistency condition thus ensuring
convergence of the method. Numerical examples show that the stress-intensity factors predicted by the
proposed method compare very well with existing solutions obtained by all-FEM or all-EFGM analyses.
A significant saving of computational effort can be achieved due to coupling in the proposed method when
compared with existing meshless methods. The agreement between the predicted crack trajectories with
those obtained from existing experimental data is excellent.
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Figure 4. Angle-cracked plate Figure 5. Domain discretization

Figure 6. Crack propagation (2a = 13.5 mm) Figure 7. Crack propagation (2a = 14.2 mm)


