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ABSTRACT 
 
An extended Gurson model incorporating the effects of the shape and spacing of the voids on the growth and 
coalescence is proposed.  The onset of void coalescence is modeled as a transition from diffuse plasticity to 
transverse localized plastic yielding in the intervoid ligament.  A simple constitutive model for the 
coalescence stage is also developed.  An assessment of the model is proposed by comparison with void cell 
computations under non-radial loading conditions.  The effect of the void shape on the fracture toughness is 
addressed using the assumption of uniaxial straining state within the fracture process zone.  The analysis 
reveals that the effect of the void shape on the fracture toughness becomes significant for initial porosity 
larger than 10-4 and this effect increases for increasing initial porosity. 
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INTRODUCTION 
 
Recent efforts in the development of computational models incorporating the void growth process has given 
rise to robust predictive methods for crack propagation in ductile solids, e.g. [1,2,3,4,5].  Most of these works 
employed the constitutive model initially proposed by Gurson [6], improved by Tvergaard [7], and finally 
extended by Needleman and Tvergaard [8].  Although good agreement with a range of experiments and void 
cells computations has been observed, the model as it currently stands still suffers from limitations which are 
though to arise partly because (i) void shape is not directly accounted for and (ii) void coalescence is not 
properly modeled.  Hence, an enhanced void growth model incorporating void shape, void distribution et 
void coalescence effects has been developed by integrating contributions by Gologonu [9], Thomason [10] 
and new ingredients related to strain hardening and to the final coalescence stage [11].  The axisymmetric 
version of the model has been extensively validated by comparisons with void cell simulations performed 
under constant stress triaxiality in Ref. [11].  This report addresses two issues.  First, the void growth model 
is again assessed by comparison with unit cell calculations, in the case of a constant strain biaxiality ratio.  
This mode of loading allows analyzing the pertinence of the model under non-radial loading.  In the second 
part, the extended void growth model is used to draw qualitative features about the effect of void shape and 
void distribution on the fracture toughness of metal alloys. 
 
Summary of the model. Only axisymmetric stress states are considered in the present work and the solid is 
made of a periodic distribution of the cylindrical representative volume element (RVE) defined on Fig. 1.   
 



Void growth model. The extension of the Gurson model due to Gologanu et al. [9], which has been adopted 
here to describe behavior prior to void coalescence, gives a constitutive relation for a porous elastoplastic 
material containing (axisymmetric) spheroidal voids.  This particular model, extended for strain-hardening, 
contains as state variables: the components of the mesoscopic stress tensor, Σ , the porosity, f, the void aspect 
ratio, S, and an average yield stress for the matrix material, σm.  The void aspect ratio is defined by S = ln(W) 
while W = Rz/Rr. 
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Figure 1: Representative volume element 
 
The functional form of the model prior to coalescence is: 
 

 Φ ≡ Φ Σ, f,  S, σ m( ) = 0 , (1) 
 

 Ý f = 1− f( ) Ý E kk
p , (2) 

 

 Ý S ≡ Ý S f , S,T( ), (3) 
 

 σm
Ý ε m

p 1− f( ) =  Σ ij
Ý Ε ij

p , (4) 
 

 σm ≡ σ m εe( ), (5) 
 

 Ý E ij
p = γ

dΦ
dΣ ij

, (6) 

 
where Φ is the flow potential; Εp is the mesoscopic plastic strain tensor; (2) and (3) are the evolution laws for 
f and S, respectively; (4) is the Gurson [6] energy balance for the plastic work allowing computation of σm 
using the effective stress-strain curve for the parent material (5); and (6) is the flow rule.  The expressions for 
the functions such as Φ  and the evolution of S are given in Ref. [9,11].  
 
Criterion for the onset of void coalescence.  Axisymmetric void cell computations [11,12] have shown that 
void coalescence consists in the localization of plastic deformation in the ligament between the voids, which, 
experimentally, gives rise to a flat dimpled fracture surface.  Thomason [10] has studied the transition to 
localization for elastic-perfectly plastic solids by looking at artificially constrained localized solutions giving 
the load as a function of the void cell geometry.  For axisymmetric geometry, Thomason has proposed that 
the average normal stress acting on the cell at the onset of localization occurs when Σ z  attains Σz

loc where  
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where α  = 0.1 and β = 1.2.  By comparing this expression with our numerical results for strain hardening 
materials [11], we also find that this expression provides an accurate estimate for the onset of localization 
within the cells, provided that σ0  is replaced by an appropriate effective flow stress for the matrix, σm  (see 
also [13]), and α  and β incorporate a dependence on the strain hardening exponent n .  The effective matrix 
stress, σm , is obtained using (4) and (5).  A fitting procedure performed on a large number of void cell results 
[9] has revealed that the coefficient β is almost constant equal to 1.24 while α(n) = 0.1 + 0.22n + 4.8 n2 
(0≤n≤0.3).  With relation (7), a new geometrical variable related to the void spacing has entered the model.  
For the sake of simplicity in the formulation of the model, we have chosen to use A = ln(λ) = ln(Lz/Lr).  The 
model thus depends on all the geometric characteristics of the representative void cell: f, A (or λ), S (or W).  



In [11], the criterion (8) has proved to very accurately predict the onset of coalescence for porosity ranging 
between 10-2 and 10-4, stress triaxialities between 1/3 and 5, void shapes W between 1/6 and 6, and void 
distribution λ between 1/2 to 16.   
 
A model for the post-localization regime.  Relation (7) still pertains after the onset of coalescence and Σz

loc is 
replaced by Σz, assuming the voids do not depart significantly from a spheroidal shape.  The additional 
equations for the evolution of the state variables during the post-localization stage are obtained under the 
approximation that elasticity, as well as any reversed plasticity, are neglected.  In agreement with the void 
cell results, the half-height of the localization zone is approximated as Rz (i.e. h = Rz , see Fig. 1).   
 
 
ASSESSMENT OF THE VOID GROWTH MODEL FOR NON-RADIAL LOADINGS 
 
The predictions of the void growth model under constant applied strain biaxiality ratio are compared to finite 
element void cell simulations performed with the same applied biaxiality ratio.  Results are presented for a 
material with f0 = 10-2, λ0 = 1, σ0/E = 0.002, n = 0.1 and W0 = 1/6, 1, 6. The strain biaxiality ratio β = Εr/Εz 
ranges from –0.5 to 0.  As the applied boundary conditions prevent plastic tensile localization, the void 
coalescence model has been turned off except for the uniaxial straining case (β=0).  Thick lines correspond 
to the unit cell calculations and thin lines correspond to the model predictions.  Figures 2 show the variations 
with overall straining of different quantities computed with the void growth model and with the finite 
element unit cell computations for initially spherical voids (W0=1) : the overall axial stress in (a), the 
porosity in (b) and the void shape in (c).  Figures 3 shows the variation of the overall axial stress as a 
function of the overall axial strain for voids initially (a) very oblate (W0=1/6) or (b) very prolate (W0=6). 
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Figure 2: Variation as a function of the overall axial strain of (a) the overall axial stress, (b) the porosity, and 

(c) the void shape, for a material characterized by f0 = 10-2, λ0 = 1, σ0/E = 0.002, n = 0.1 and W0 = 1.  
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Figure 3: Variation of the overall axial stress as a function of the overall axial strain for a material 

characterized by f0 = 10-2, λ0 = 1, σ0/E = 0.002, n = 0.1 and (a) W0 = 1/6 and (b) W0 = 6 (a).  
 



Figs. 2a and Figs. 3 show that the overall stress-strain behavior obtained with the model quantitatively agrees 
with the finite element unit cell solution.  The most important characteristics, which are the maximum stress 
(the "strength" of the material) and the strain at final fracture (the "ductility" of the material), are predicted 
with an accuracy increasing when the strain biaxiality decreases.  One should note that a constant strain 
biaxiality ratio involves marked variations of the stress triaxiality during deformation.  In the case of large 
strain biaxiality ratio, the stress triaxiality sometimes reaches values larger than 5 or 6 for which other 
phenomena, such as unstable void growth may be expected. 
 
 
FRACTURE TOUGHNESS PREDICTION 
 
As initially proposed by Andersson [14] and then revisited by Tvergaard and Hutchinson [15], the fracture 
process zone at the tip of a sharp crack can be anticipated as a row of multiple interacting voids which, to a 
good approximation, are strained uniaxially during the major part of the void growth.  Indeed, under large 
stress triaxiality, the fracture process involves early localization of the plastic flow in a planar zone of 
essentially one void spacing in thickness.  Assuming spherical voids and isotropic void distribution, 
Tvergaard and Hutchinson [15] have shown that the fracture toughness, JIc, governing crack growth initiation 
can almost exactly be expressed as 
 

J1c = Γ0  (9)  
 
where Γ0 is the work per unit area spent in the band until final failure.  It can be computed from the Gurson 
model according to 
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where E is the Young's modulus.  Xia and Shih [16] have shown that the uniaxial straining assumption is 
valid as long as f0 is not too small.  Typically, when f0 becomes smaller than 0.1%, a one void - crack 
interaction mechanism takes place.  In that case, the uniaxial straining assumption looses its pertinence.  The 
analysis of Tvergaard and Hutchinson [15] has been extended by accounting for the effect of the void shape 
using the extended-Gurson model.  Now, F generally writes F = F σ 0 E,n, f0,W0( ), assuming isotropic initial 
void distribution (λ0 = 1).  This extended model allows addressing the anisotropic fracture toughness of metal 
alloys.  Indeed, since it accounts for the void shape, this model is able to capture variations of the fracture 
toughness with the orientation of the crack plane resulting from preferential orientation of the inclusions.   
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Figure 4: Variation of  F = Γ0/σ0Lr0 as a function of the initial porosity f0 for various initial void shape 
 
The variation of Γ0/σ0Lr0 as a function of the initial porosity for various void shapes is shown in Fig. 4 (for n 
= 0.2 and σ0/E = 0.002).  The effect of the initial void shape is significant for porosity larger than about 10-4.  
Prolate shape increases Γ0/σ0Lr0 while oblate shape reduces it.  For void shape departing from spherical, 



Γ0/σ0Lr0 cannot be considered anymore as independent of the initial porosity, it increases with f0 for prolate 
voids and decreases with f0 for oblate voids.   
 
The results of Fig. 4 can be used to qualitatively understand and predict the variation of the fracture 
toughness as a function of the loading direction for rolled plates with preferential orientation of the second 
phase.  From these results it is concluded that void shape effects (and the combined effect coming from the 
change in ligament length) can alone explain a factor two (or more) difference in the toughness of plates with 
elongated inclusions depending on the orientation of the crack plane. Note that this analysis is only 
qualitative because of the assumed axisymmetry.  In other words, a 90° rotation of a prolate void with W0 = a 
does not give an oblate void with W0 = 1/a.  
 
 
CONCLUDING REMARKS 
 
The new model only depends on the initial values of the state variable and thus avoids the use of critical 
porosities (for the onset of coalescence and for final separation).  The two additional microstructural 
characteristics of the new model, the void initial  shape S0 and the initial void distribution λ0, can be obtained 
from the same metallographic analysis performed to ascertain f0 and L0.  The comparison with the void cell 
simulations in Ref. [11] for constant stress triaxiality and, in this report, for constant strain biaxiality has 
established that the full void growth/coalescence model is able to quantitatively account for variations of all 
the characteristic parameters of the representative volume element of Fig. 1: porosity, void shape, cell aspect 
ratio, stress triaxiality, for a wide range of matrix flow behavior.  Consequently, the model naturally allows 
addressing issues such as the anisotropy in fracture toughness observed in many materials formed with large 
amounts of plastic strains.  Most importantly, behavior at low and large stress triaxiality are adequately 
encompassed by the same model, giving thus the possibility to deal with failure of thin and thick structural 
parts within the same framework.   
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