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ABSTRACT 
 
Cohesive zone models (CZM) are attractive for fracture process simulation since they provide a link 
between failure at the micro-scale and macro-scale structural response. Throughout the recent past 
many successful applications of CZMs have been reported. To further expand the scope of CZM, 
the development of improved constitutive equations for the description of the mechanical processes 
during material separation are needed.  The present paper reports on several recent developments on 
CZM that incorporate aspects such as triaxiality, rate dependence, damage accumulation during 
cyclic loading, as well as coupling to heat transfer.    
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INTRODUCTION 
 
In the recent past it has become evident that the framework of classical fracture mechanics – despite 
its significant success – possesses a series of limitations as a predictive tool [1].  To obtain a more 
fundamental view of failure it is necessary to adopt a concept in which the competing actions of (1) 
material separation processes in the cohesive zone at and near the crack front, i.e. in the cohesive 
zone, and (2) the deformation of material elements surrounding the fracture process zone, determine 
the observed behavior of a structure.  This type of failure analysis becomes possible if the stress 
strain behavior of a material as well as the material separation behavior is described by an 
appropriate constitutive equation.  

In the cohesive zone model (CZM) approach, the material separation behavior is described 
in a constitutive equation relating the crack surface tractions, TCZ, to the displacement jump across 
the crack, .  This law represents the physical processes of material deterioration in the fracture 
process zone. Its material parameter are the cohesive strength, σmax, the peak traction, the cohesive 
length, δ, the value of displacement jump across the crack at which the stress carrying capacity has 
fallen to zero, and the cohesive energy, φ , the area under the traction-separation curve.  Within the 
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mechanical equilibrium statement written as the principle of virtual work the cohesive zone 
elements are accounted for as internal surfaces: 
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Contributions in the volume and external surface terms (on V and Sext) are described by the nominal 
stress tensor, s=F-1 det(F)σ, with σ the Cauchy stress, the displacement vector, u, the deformation 
gradient, F, as well as by the traction vector, Te, on the external surface of the body. Traction 
vectors are related to s by T=n s, with n being the surface normal. The cohesive surface contribution 
is described by the integral over the internal surface, Sint.  

The concept of a cohesive fracture process zone abandons the failure criterion used in 
classical fracture mechanics and crack growth resistance of a structure is now viewed as the sum of 
the energy dissipated in the plastic zone and the energy spent in the actual separation process.   

The basic concepts of CZM models are due to [2,3]. Current CZM models [4] differ from 
these classical models in that no initial crack needs to be defined and crack nucleation can thus be 
accounted for.  Also, the length of the cohesive zone is not a parameter of the model.  CZM models 
have been used in studies of monotonic or dynamic loading situations in homogeneous materials, 
composites and at interfaces. An overview paper [1] summarizes several examples of recent 
developments. Despite this success, few developments have been reported that aim at the 
development of improved traction separation laws.  Such development can be accomplished if 
additional state variables are introduces into the CZM formulation [5]. The cohesive surface 
tractions are then no longer dependent on only. The present paper summarizes recent 
developments in this direction undertaken by the author.  Approaches to computational modeling of 
ductile crack growth, rate dependency of failure, fatigue crack growth as well as fracture under 
thermo-mechanical loading are described. 

 
 
TRIAXIALITY DEPENDENT CZM  
 
Fracture of ductile materials is well known to be dependent on the level of constraint being present 
at the crack tip. Several prominent studies have clearly demonstrated that both the peak stress 
carrying capacity as well as the energy dissipated during void growth and coalescence can be 
characterized in terms of the stress triaxiality. While material models specifically geared towards 
failure based on void growth, e.g. the Gurson model [6], were specifically developed to account for 
the effect of triaxiality on material damage, CZMs have commonly assumed constant material 
parameter values for σmax, δ or φ.  This shortcoming can be overcome if these parameters are made 
dependent on the stress triaxiality. Since this quantity is not defined within the CZM itself, the 
effects of local crack tip constraint on the CZM parameters are introduced in dependence of the 
stress triaxiality in the solid elements adjacent to the crack line.  
 In a numerical study on ductile crack growth in a high strength structural steel, [7], the 
dependence of the CZM parameters on stress triaxiality was determined by unit cell simulations. 
The CZM parameters normalized by the flow strength of the material, σ0, and the void spacing, X, 
respectively, are given in Fig. 1a in dependence of the maximum value of stress triaxiality reached 
during loading.  Increasing triaxiality levels lead to an increase in σmax and a decrease in φ. 
Subsequently, to study the effect of specimen size on the crack growth resistance a CZM with the 
CZM parameter dependence as of Fig. 1a was used. Both C(T) and M(T) specimens were analyzed. 
Figure 1b depicts the cohesive energy at ∆a=20X normalized by (σ0X) in dependence of the 
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normalized specimen size (W/X).  The results clearly indicate that the cohesive energy, i.e. the 
energy needed to form new fracture surface, indeed is dependent on specimen size and geometry. 
The limit value of φ=0.5 (σmax X) is reached only for fully developed crack tip constraint. 
Conventional CZMs cannot account for this effect.   
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Figure 1:  (a) Dependence of the normalized cohesive zone parameters on the peak value of stress 
triaxiality as obtained by unit cell computations of void growth, (b) Prediction of the normalized 
cohesive energy (∆a=20 X) in dependence of the normalized size for C(T) and M(T) specimens. 

 
 
RATE DEPENDENT CZM FOR ADHESIVES 
 
In studies of the integrity of adhesive bonds, CZM can conveniently be used to describe the 
combined deformation-failure behavior of the adhesive.  To accurately describe polymeric adhesives 
it is necessary to account for the rate dependent fracture behavior exhibited by these materials.   
 
 
 
 
 

 
 

Figure 2: A rate-dependent CZM based on a standard linear solid model. 
 
 
To capture such effects, a rate dependent CZM based on the standard linear solid was developed [8].  
In this new CZM model (Figure 2), a rate-independent CZM, a secondary stiffness parameter, 0

1E  

(force per displacement per area), and a viscosity, 0η , (force per velocity per area) characterize the 
adhesive. To calibrate these parameters, fracture tests on DCB specimen bonded by a HDPE 
adhesives were performed for a wide range of applied loading speeds, V.  A total of three tests were 
necessary to determine all CZM parameters.  Figure 3a compares measured and predicted peak loads 
for DCB fracture tests. Subsequently, the new dependent CZM model was applied to investigate 
DCB tests with stepwise constant applied loading speeds.  Figure 3b depicts the result of one of 
these tests.  A good agreement between the experimental data and the numerical predictions was 
obtained. Especially, the short-term stress relaxation behavior was well captured. 
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Figure 3: (a) Calibration of rate dependent CZM to peak loads of DCB tests at various crosshead speeds; (b) 
DCB test with three levels of crosshead speeds, simulation and experimental results. 

 
 

CZM FOR FATIGUE CRACK GROWTH 
 
For investigations of fatigue crack growth (FCG) the use of the Paris equation, da/dN=A (∆G)m, to represent 
FCG data is a widely accepted approach [9].  However, this equation is empirical and provides a data 
correlation scheme rather than a predictive capability. This fact becomes especially important for interface 
FCG since experimentally determined ∆G-da/dN curves in this case depend on factors not of concern in 
homogeneous materials. Motivated by this need, it is attractive to extend CZMs to account for irreversible 
deformation, incorporate loading-unloading conditions and effects of accumulation of damage [10]. 
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Figure 4: (a) The effective traction separation behavior accounting for unloading and damage dependent 
cohesive strength; (b) Numerically predicted fatigue crack growth rates for three values of the fatigue 

strength parameter, σf ; cyclic loading with R=0. 
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For cyclic loading, the evolution of the cohesive strength of the FPZ is accounted for by the use of a damage 
variable, D. The current cohesive strength is given as σmax= σmax,0 (1-D), where σmax,0 is the initial cohesive 
strength. For the case of mode I loading, the evolution of the damage variable, D, depends on the amount of 
the total accumulated displacement jump, ∆tot, and on a fatigue limit stress, σf :  
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A parametric study of fatigue crack growth in an adhesively bonded DCB specimen was performed using a 
formulation accounting for Eqn. 2. Figure 4a depicts the evolution of both the crack surface traction and the 
damage variable as a function of the number of applied load cycles for three locations in the FPZ. Figure 4b 
summarizes the numerically obtained crack growth rates in dependence on the normalized applied ∆G/φ0 for 
three levels of fatigue strength, σf.  The numerically obtained d(∆a/δ )/dN values can be described by the use 
of the Paris relation.  For the present choices of the fatigue limit (C=0.25, 0.40, 0.55) the predicted values of 
the Paris exponent, m, are 2.0, 2.5 and 3.1, respectively. 
 
 
HEAT TRANSFER CZM 
 
Past applications of the CZM were directed towards the analysis of mechanical loading only. In many 
situations, however, fracture is coupled to and influenced by other physical processes. As an example of 
interest, consider the thermal gradient loading of a composite with crack bridging fibers [11]; see Fig. 5 for a 
schematic drawing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Thermo-mechanical processes during failure of a composite with bridging fibers. 
 

A computational framework is required that allows for physically realistic fracture simulation for this 
thermo-mechanically coupled loading situations under the simultaneous consideration of crack growth and 
heat flux across the crack and the fracture process zone. 

For a solution of this problem the system must fulfill thermodynamic equilibrium in addition to the 
mechanical equilibrium equation, Eqn. 1. In variational form and using Fourier’s law, this can be expressed 
by: 
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                                                                                (3) 

 
The volume and external surface contribution (on V and Sext) are described by the temperature field, θ, the 
material density, ρ, the heat capacity, cp, the conductivity matrix, k, the heat flux per unit area of the body 
flowing into the body, q, and the heat supplied externally into the body per unit volume, r.  The cohesive 
zone contributions, representing the crack wake and the process zone in front of the crack tip, are again 
described by the integral described by the integral over the internal surface, Sint. Two quantities describe the 
conductance across the cohesive zone: the cohesive zone conductance, hCZ, and the temperature jump across 
the cohesive surface, ∆θ=θC1−θC2, with θC1 and θC2 the temperatures of the opposite crack surfaces.  The 
coupling between stress and heat transfer part of the fracture problem as described by Eqns. (1) and (3), 
occurs via the cohesive zone conductance, hCZ. This quantity, in general, is dependent not only on 
temperature but also on both the traction as well as the displacement jump, , across the cohesive surface:  

 
 (4) 

 
The conductance law, Eqn. 4, describes the energy transport across cracks or delaminations. In the process 
zone hCZ depends on the level of material deterioration and changes from that given by the solid to the crack 
wake conductance. In the crack wake, hCZ is dominated by gas conductivity or radiation as well as possibly 
by the contact conductance of the two crack surfaces. Fully coupled thermo-mechanical analyses with 
repeated non-uniform and non-steady heat flow as well as secondary mechanical loads are possible with this 
approach. It describes the creation of new free surface and thus accounts for the changing heat transfer 
boundary conditions due to crack growth.  
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