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ABSTRACT 
 
  Solid materials possess two modes of elastic deformation to an external load. One is distortional and the other 
is dilatational. At the limit of elasticity, failure occurs by one of the two modes corresponding to respective 
elastic ones, i.e., yielding occurs as a limit of distortional deformation and fracture as a limit of dilatational one. 
Yield condition has been established with deviatric strain and stress in the theory of plasticity, but fracture has 
not been described with dilatation. In this paper, authors show close connection between dilatation and fracture, 
and proposes a criterion to predict the failure mode for a given material, non-elastic behavior, with the ratio of 
the elastic constants G/K, where G and K denote shear and bulk moduli, respectively. 
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INTRODUCTION 
 

Fracture of materials has been discussed in terms of various physical quantities as summarized in Table 1.  
 
 

TABLE 1 
 FRACTURE CRITERION FROM VARIOUS VIEWPOINTS 

Viewpoint of fracture Physical quantity Criterion for fracture 
Energy Surface energy Griffith’s theory [1] 

 Elastic energy J-integral [2] 

Stress space Force Crack extension force [3] 

(Mechanical aspect) Stress Stress intensity factor [4] 

Strain space Displacement Crack opening displacement [5] 

(Geometrical aspect) Strain Dilatation (and Distortion)* 

Property of matter Elastic constant Local elastic constant [6] 
* The authors are proposing in this paper. 

 



Fracture as a natural phenomenon is supposed to obey a universal principle, but we can describe it in many ways 
from various viewpoints. Each description is related to a view to visualize respective aspect of fracture through 
the employed physical quantity. 
For example, Griffith’s theory visualizes fracture through energics by noting that with an extension of a crack 
strain energy can be converted to surface free energy. Similarly, description in terms of stress concentration near 
the crack tip is related to the view that a solid is broken by a force (stress) beyond a critical value. Fracture may 
be related to degradation of materials around a crack tip, which involves the field of materials science in addition 
to mechanics. We can also consider fracture a geometrical problem as in the theory with the crack opening 
displacement. In this paper, we point out that dilatation of a solid body is closely connected with fracture and 
proposes a criterion to predict the failure mode for a given material as a first step toward establishing a fracture 
criterion in terms of dilation. 
  Elastic deformation can be classified into two modes, i.e., dilation (volumetric change) and distortion 
(shearing deformation). Isotropic solid bodies possess two independent elastic constants, shear modulus G and 
bulk modulus K, each of which represents resistance to distortion and dilatation, respectively. At the limit of 
elasticity, failure occurs by one of the two modes corresponding to respective elastic ones, i.e., yielding occurs 
as a limit of distortional deformation and fracture as a limit of dilatational one. Yield condition has been 
established with deviatric strain and stress in the theory of plasticity, but fracture has not been described with 
dilatation. We propose to classify other physical properties also in connection with those two modes as shown in 
Table 2. 
 
 

TABLE 2 
CLASSFICATION BASED ON THE DEFORMATION MODE 

Deformation 
mode 

Elastic constant Strain energy Property of 
material 

Failure 

Distortion Shear modulus G Distortion 
energy Es 

Ductility Plastic 
deformation 

Dilatation Bulk modulus K Dilatation 
energy Ev 

Brittleness Fracture 

Es = G (ε ijε ij-ε iiε jj /3 ),  Ev = Kε iiε jj /2 , where ε ij is the strain component. 
 

 
 
RELATED PHENOMENA 
 

We can correlate the present idea with various behaviors of materials as follows: 
1) Rubber is nearly incompressible materials [7]. It means that dilatation associated with deformation is 
negligibly small, hence we expect that deformation will not be easily terminated by fracture.  
2) The volume of a body is nearly unchanged during plastic deformation, hence plastic deformation will not be 
easily terminated by fracture. 
3) Materials become more ductile under hydrostatic pressure [8]. This can be interpreted as that fracture is 
prevented by constraining dilatation. 
4) The thick specimen (plane stress) of a ductile material becomes more brittle than the thin one (plane strain). 
Under uni-axial tensile stress σ , volumetric strain Vε  with the plane stress condition becomes 
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where E and ν  denote Young’s Modulus and Poisson's ratio, respectively. When 5.00 ≤≤ν , we get the 
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V . Therefore, dilatation with the plain stress condition is smaller than that with 

the plain strain condition. 
5) In the fracture of brittle materials, voids are observed in tensile region at high temperature. It seems that 
dilatation is the driving force to form voids at high temperature, and that elastic dilatation influences fracture at 
room temperature.  
  The consideration given above suggests a possibility that the ratio G/K(=3(1-2ν )/2(1+ν ), which decreases 
monotonously with Poisson's ratio ν ) governs the failure mode, i.e., ductile vs. brittle behavior, of a given 
material. Table 3 summarizes the values for typical examples [9,10], and we see that this expectation in fact 
works. Materials which easily change volumes are brittle and materials which can be easily distorted are ductile. 
This tendency is independent of various classifications of materials such as metal vs. nonmetal, crystal vs. 
amorphous, and so on. Consequently, we can regard the ratio G/K (or Poisson's ratio) as a measure to predict the 
failure mode for a given material. It is called Pugh's rule [11]. Kelly et al. [12] pointed out the similar result that 
the ratio G/E is the index of ductile-brittle from comparison between shear and tensile stress. The ratio G/K and 
G/E are also the monotonous function of ν , hence both indices bring the same result. But the original viewpoint 
of each index is completely different. 
 
 

TABLE 3 
CORRELATION BETWEEN G/K AND FAILURE MODES 

Material E(GPa)  G(GPa)   ν   K(GPa)   G/K  
Quartz (fused)   73.1   31.2   0.170    36.9   0.846  
Glass (Crown)   71.3   29.2   0.22    41.2   0.709 ↑  
Cast iron  152.3   60.0   0.27   109.5   0.548  Brittle 
Mild steel  211.9   82.2   0.291   169.2   0.486  
Fe80B20  (amorphous)  168.7   64.9   0.30   141   0.460  
Copper  129.8   48.3   0.343   137.8   0.351  
Aluminum   70.3   26.1   0.345    75.5   0.346  Ductile 
Brass (70 Zn, 30 Cu)  100.6   37.3   0.350   111.8   0.334 ↓  
Gold   78.0   27.0   0.44   217.0   0.124  

 
 
NUMERICAL EVALUATION OF DILATATION AND DISTORTION NEAR CRACK  
 

It is interesting to see how the difference in G/K affects the distribution of the strain and the strain energy 
density relevant to each of the two modes of deformation. Taking gold and crown glass as typical examples of 
ductile and brittle materials, we calculated the distributions by the finite element method for plates with cracks at 
their centers under 1% uniaxial tension with the plane strain condition. The results are given in Figs.1 and 2, in 
each of which a quarter of the plate is shown and the strain energy density is normalized with the total strain 
energy Et stored in the entire plate. For gold, distortion energy density Es is high along the 45 degrees direction 
from the crack tip over a wide region, while high values for dilatation energy density are limited to a small 
domain around the crack tip. On the other hand, in the case of glass, relatively large amount of strain energy is 
stored as the dilatation energy over a relatively wide region around the crack tip. 

The distributions of distortion, represented by γ 12 are almost the same for gold and glass because the plates 
are stretched by the same amount of strain (Fig.2(a)). On the other hand, distributions of dilatation, represented 
by ε ii are very different between gold and glass (Fig.2(b)). Those numerical results suggest that materials with 
small G/K tend to fail plastically while materials with large G/K tend to have cleavage fracture. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Distortion energy density           (b) Dilatation energy density 
Figure 1: Distribution of strain energy density. 

 

 
 

 
(a) Distortion 12γ     (b) Dilatation 

Figure 2: Strain distribution. 
 
 
CONCLUSION AND DISCUSSION 
 

We notice the close connection between the deformation mode (distortion and dilatation) and the failure mode 
(plastic deformation and fracture), and that brittleness and ductility are not only material property. In fracture 
mechanics, we ignore close connection between dilation and fracture. In the combined mode of fracture, we 
might discuss the singularity of dilation instead of the stress singularity near crack tip.  
  Microscopically, topology of atomic array changes in distortion, and many 'meta-stable states' appear in the 
process. Therefore, we should evaluate the yield condition by (distortion) energy. On the other hand, the 
inter-atomic distance increases in dilatation, and the 'critical state' appears. Therefore, we could evaluate fracture 
by (dilatation) strain. Furthermore, lattice defects are also classified into two categories; one is the dislocation, 



which causes distortion, and the other is the vacancy, which causes dilatation. Therefore, it could be possible to 
establish new micromechanics from the viewpoint of the distortion and dilatation. 
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