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ABSTRACT 

 
A transient finite element analysis has been carried out to provide insight into the dynamic crack 
growth behavior in viscoplastic materials under plane strain and small-scale yielding conditions. 
The fracture process is characterized by an embedded cohesive zone model in which the 
macroscopic fracture work is a function of crack opening rate and temperature rise on the crack 
flanks. The material is an isotropic hardening and thermal softening elastic-plastic von Mises solid. 
The computational model is developed to identify the individual roles of crack-tip constraint, 
loading rates and cohesive law properties. There is a sharp rise in the fracture resistance curves after 
a small amount of crack growth. The competition of strain-rate hardening and thermal softening in 
the fracture process zone can significantly change the fracture resistance curves. The effects of 
loading rates and crack-tip constraints have been examined. It is shown that the trend of increasing 
toughness due to the negative T-stress is greatly reduced when crack growth is fully deve loped. In 
addition, crack-tip constraint does not affect the limiting crack speed. 
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INTRODUCTION 

 
One class of models that serves as a bridge between the macroscopic and microscopic methods is 
that of the embedded cohesive zone model (ECZM). The fracture process is represented in terms of 
a traction-separation relation applied on the plane of fracture, while the bulk materials are 
considered by conventional continuum mechanics. Although this model cannot directly account for 
the interaction of the crack tip and the voids nearest to it, the implication of all these factors can be 
qualitatively put into a phenomenological cohesive law through some primary parameters [1]. It is 
more flexible than the cell model and easier for implementation of finite element methods. In 
addition, ECZM provides an illustrating and tractable way to include constitutive non-linearity into 
the continuum models. 
 
Fracture behavior depends strongly on loading rate, material response and finite geometry change. 
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Emphasis is placed on dynamic crack growth such that inertia effect becomes significant. The class 
of materials considered here is hardened by increasing effective plastic strain rate and weakened by 
temperature rise. It is inferred that fast crack growth will have lower toughness since the elevated 
traction acts on the plane of separation due to strain-rate hardening. However, the inconsistent trend 
found in recent experiments by Du et al [2] and theoretical analyses [3,4] showed that rate-
dependent materials must have a rate-dependent fracture process. 

 
The effect of crack-tip constraint on fracture toughness has attracted a great deal of interest during 
the past decade. For stationary cracks in some specimen geometries, there is loss of J-dominance of 
crack-tip fields due to the non-uniqueness of hydrostatic stress [5,6]. The same problem has been 
extended to quasi-static crack growth in ductile materials by Xia and Shih [7] using a cell model 
and by Tvergaard and Hutchinson [1] using a cohesive zone model. However, crack-tip constraint 
effects on the dynamic fracture process have not been fully exploited. 
 
The objective of the present paper is to consider the influences of crack-tip constraint, material 
inertia and thermal softening on the crack growth resistance. To this end, finite element simulations 
of mode I plane strain crack growth under small-scale yielding conditions are carried out for a range 
of material parameters. A rate- and thermal-dependent traction-separation relation is used to model 
the fracture process. The material considered is an isotropic hardening and linear thermal softening 
viscoplastic solid. 
 
CONSTITUTIVE EQUATIONS OF THE SOLID AND THE FRACTURE PROCESS 

 
We adopt a thermal-viscoplastic constitutive relation with linear thermal softening and power- law 
strain-rate hardening. The deformation rate tensor is decomposed into elastic, viscoplastic and 
thermal parts: 

Tvpe DDDD ++=          (1) 
For an isotropic hardening, viscoplastic solid, the plastic part of the deformation-rate tensor and the 
thermal dilatation take the forms: 
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where &ε  denotes the equivalent plastic strain rate, IS ⋅⋅ττ−−ττ== 3/1  the deviator of Kirchoff stress ττ , 

and 2/:3 SS==σσ e  the equivalent stress, α  the thermal expansion coefficient, T∆  the 
temperature rise and I  the second order identity tensor. The constitutive relation can be written as: 
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where ττ
∇

 is the Jaumann rate of Kirchoff stress tensor, L  is elastic modulus tensor with Young’s 
modulus E and Possion’s ratio ν . The effective plastic strain rate becomes: 
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where ∫ ε=ε
t

dt
0

&  denotes the equivalent plastic strain, 0ε&  is reference strain rate, m rate sensitivity 

parameter, 0σ  yield stress, E/00 σ=ε  reference strain, N strain hardening exponent, 0T  reference 
temperature, usually equal to the environmental temperature, abd β thermal softening coefficient. 
 
The form of the static traction-separation law given by Tvergaard and Hutchinson [1] is adopted 
here. The parameters characterizing the traction-separation curves include the work of fracture per 
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unit area, the peak stress for separation $σ  and three characteristic lengths, cδδδ ,, 21 . The shape 

parameters 1δ  and 2δ  are chosen so that cδ=δ 15.01  and cδ=δ 5.02 . It is shown that these factors 

are of secondary importance in failure assessment [1]. The fracture work, ∫
δ δδδσ=Γ c dT
00 ),,( & = 

2/)(ˆ 21 δ−δ+δσ c , is not a constant because of the effects of material inertia and thermal softening. 
Further, it is assumed that the rate and the thermal effects on the fracture work were incorporated 
into the model in terms of the changes in the peak traction $σ . The cohesive strength is written as: 
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where r1  and r2  are material constants which describe the rate effect and thermal softening, 0δ& (=1 

m/s) is reference separation rate and $σ0  is steady-state traction for the quasi-static cohesive zone 

model, and CT 0
0 20= . 

 
COMPUTATIONAL MODEL 
 
Finite element simulations described here are based on updated coordinate Lagrangian formulation. 
All physical quantities are functions of a set of moving coordinates x i  at time t. Consider an 
equilibrium crack in a body with current volume V, surface Sext  subjected to a velocity constraint 
and internal cohesive surface area Scoh . The weak form of the governing equations for mechanical 
fields yields the incremental form for the principle of virtual work on the current configuration [8]: 
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where ijτ  are the Kirchoff stress tensor components equal to those of the  Cauchy stress tensor σ ij  
in the current configuration, D u uij i j j i= +( & & ) /, , 2  are deformation rate tensor components and &ui    

are displacement rate vector components. The kinetic energy K u ti i= 05 2 2. /ρ∂ ∂  in which ρ is the 
mass density in the current configuration, T i  and S i  are the traction components on the external 
surface Sext  and internal cohesive surface Scoh . It should be noted that the Kirchoff stress is 
identical to the Cauchy stress if we take the current state as the reference configuration. 
 
Also, the local balance of energy gives the following governing equation for the conduction of heat 
in a continuous medium: 

ρ
∂
∂

κ χc
T
t

T wp ii
p= +,          (7) 

where c p  is heat capacity, κ  is thermal conductivity and the parameter χ  specifies the fraction of 

plastic work ( p
ij

ijp Dw σ= ) that is converted to heat and is taken to have a value 0.90.  
  
The crack growth analyses are carried out under small-scale yielding conditions. Due to symmetry 
about the crack plane only half of the solid needs to be analyzed. A semi-circular region with initial 
radius 0R  = 20 mm is used in the numerical computation. It is chosen so that ∆= 20000R  where ∆  

is the size of the smallest elements of the mesh at the crack-tip. ∆=δ 1.0c  is selected to determine 
the minimum dimension of these elements if they are not specified. The mesh consists of 1584 4×  
triangle elements and a uniform mesh region with an initial length ∆= 480L  is used to model crack 

growth. A length twice 0L  can be taken as the uniform mesh zone since the mesh size is increased 
at a ratio near unity from the minimum size.  
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On the outer semi-circular boundary, the displacements, 1u&  and 2u& , are given by the external stress 
fields, according to small strain linear elastic fracture mechanics solutions. Thus, we have 
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in which 2
2

2
10 xxR += , )/(tan 121 xx−=θ  for the points on the remote boundary in the current 

configuration, and IK&  measures the incremental rate of the mode I stress intensity factor. 
 
To minimize the wave effect, the initial velocities throughout the region are given by [9]: 
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in which 2
2

2
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At t=0, the non-singular stress term, T-stress, is applied uniformly. In this work, the T-stress T is 
applied together with the corresponding transverse stress Tν=σ33  under plane strain conditions. 
Its magnitude is taken to be such that the material remains elastic. 
 
The Newark- β method with β = 0  and γ = 05.  is used to integrate the discrete equation of motion. 
A lumped mass matrix is chosen since it is preferred for the explicit integration procedure. A fixed 
time step 5 1110−× s is employed, which is sufficient to ensure that the numerical solutions remain 
stable. In the calculations, all material parameters are kept fixed to be representative of AISI 4340 
steel studied experimentally by Hartley et al. [10]. The properties are specified by: E =200 GPa, 
ν =0.3, σ0 =1250 MPa, N =0.08, m =0.01, &ε0 =0.001/s, ρ =7833 kg/ m3 , C05 /103.1 −×=α , 

c J kg Cρ = 456 0/ , k w m C= 54 2 0/  and 0016.0=β . 
 

RESULTS 
 

Effects of rate dependence and thermal sensitivity in traction-separation laws 
Our first attention is focused on the effects of strain rate sensitivity and thermal softening factors in 
the cohesive zone model. Computations are carried out for specified material properties, 0σ̂ =2.5 0σ  

and smMPaK I /107=&  for different values of 1r  and 2r . Figures 1 and 2 show the R-curves for 

the two cases: (i) 1r =0.01 and 2r =0.001 and (ii) 1r =0.002 and 2r =0.001. The R-curves rise steadily 
after only a small amount of crack growth. It is seen that strain rate sensitivity plays a beneficial 
role in toughness enhancement, because higher magnitudes of toughness can be obtained at 1r =0.01 
than at 1r =0.002. Physically, rate effect can act effectively through an increase in energy dissipation 
in the plastic zone since the fracture stress is enhanced by rate sensitivity in the fracture zone.  
 
In Fig. 3, the variation of IdK  is plotted against 0/ Ra∆  for 2r =0.003 and 1r =0.002, so that the 

thermal effect becomes dominant over rate dependence. It is observed that at high 2r , crack growth 
resistance is much reduced. However, when 0/ Ra∆ >0.005, the slopes of the R-curves increase to 

the same order as those at small 2r . This is because, as the crack advances, the thermal softening is 
weakened severely and strain-rate hardening prevails.  
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Fig. 1. Crack growth resistance curves for 

1r =0.01, 2r =0.001 at three different T-stress 
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Fig. 2. Crack growth resistance curves for 

1r =0.002, 2r =0.001 and 0σ̂ =2.5 0σ , at three 
different levels of T-stress and 

smMPaK I /107=& . 
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Fig. 3. Crack growth resistance curves for 

1r =0.002, 2r =0.003 at three different T-stress 
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Fig. 4. Crack growth resistance curves for 

1r =0.002, 2r =0.001 and 0σ̂ =2.5 0σ , at three 
different levels of T-stress and 

smMPaK I /106=& .
 

Effects of loading rates 
For comparison, two impact velocities IK&  = 610  and smMPa /107  are used with material 

constants 1r =0.002, 2r =0.001 and 0σ̂ =2.5 0σ . The R-curves at the higher impact speed are shown 
in Fig. 2, while those R-curves at the lower speed are shown in Fig. 4. There is a reduction in the 
fracture toughness with the lower impact speed. This is because high strain-rate increases the stress 
ahead of the crack-tip. Similarly, the fracture stress is enhanced by the rate-dependent cohesive law.  
Further, plastic deformation is restricted at low loading rates. The crack speed at different loading 
rates are examined in Figs. 2 and 4. It is found that the crack speed is larger at low impact speeds 
than at high impact speeds. The steady-state crack speed at 25.0/ 0 −=σT  is 518m/s at the higher 
impact speed and 648m/s at the lower impact speed. 
 
Effects of crack-tip constraints  
Although the loss of crack-tip constraint plays an important role in the toughness enhancement of 
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cleavage fracture, the constraints cannot significantly affect the toughness at crack initiation for 
ductile fracture at low loading rates, as shown in Fig.4. The sensitivity of crack initiation toughness 
to T-stress can be found at high loading rates, as shown in Figs. 1 to 3. For example, the initiation 
toughness is 4.78 MPa m  for 0/ σT =0.25 and 5.03 MPa m  for 0/ σT =-0.25 in Fig. 1. In 
addition, negative T-stress can decrease crack speed during the early stage of crack growth.  
 
Negative T-stress can increase fracture toughness significantly. There is a large difference in the R-
curves between T=-0.025 and 0.25. At high loading rates, the difference in toughness mainly results 
from T-stress at the early stage and the trend is offset with crack advance. Upon full development of 
the crack speed, the slopes of the R-curves tend to be insensitive to the T-stress. (See Figs. 2 for 
example). This means that the steady-state crack speed is insensitive to the constraints. However, 
this is not the case at low impact rates. It is likely that the T-stress is still comparable to the fracture 
stress at lower loading rates. 
 

 
CONCLUSIONS 

 

(1) Crack initiation is suppressed as the rate-sensitivity factor 1r  in the cohesive law increases. The 
toughness is higher for larger 1r , irrespective of the impact speeds.  

(2) Thermal softening caused by intense plastic deformation promotes ductile failure. This effect is 
more significant at the early stage of crack growth. After some crack extension, thermal effect at 
high 2r  is restricted and the R-curves increase at the same rate.  

(3) Increasing the loading rate enhances the fracture toughness because the rate effect increases the 
flow strength and the fracture energy, as well as the kinetic energy. It is seen from Figs 2 and 4 
that for low strain-hardening elastic-plastic materials, material inertia and rate sensitivity can 
increase the toughness by a factor of two. 

(4) Fracture behavior is also strongly controlled by the constraint effect. However, it depends on the 
loading rate. Constraint does not change the crack initiation toughness at low loading rates, but 
it does at high loading rates. Importantly, change in the crack-tip constraint has no significant 
effect on the steady-state crack speed at high impact speeds.  
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