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ABSTRACT 
 
The paper considers the problem of strength of a body containing an artificial flaw of a definite size and 
shape. The following questions are formulated: What is the range of allowable dimensions of a flaw of a 
given shape, which will not lead to the reduction in the strength of a body? How much will be the strength 
reduction in case when the flaw dimensions exceed the allowable ones? The known nonlocal fracture criteria 
such as the average stress criterion, the point stress criterion and the fictitious crack criterion can not be used 
for solving the linked problem of critical loading and critical size of a flaw stated above. To solve this 
problem the approach is suggested according to which the strength of a material in the stress concentration 
zone (local strength) is assumed to be dependent on its size. The corresponding fracture criterion is 
proposed. It is applied to estimating the tensile strength of composite laminates weakened by a single 
circular hole; the tensile strength of high strength steel bars with a circumferential notch and the tensile 
strength of polymethylmethacrylate plates with an angled elliptic hole. The expressions for the local-strength 
function and the failure stress are obtained and good agreement is found between the results of calculations 
and known experimental data. 
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INTRODUCTION 
 
The traditional approach to strength calculations is to compare the internal stresses, which occur in a loaded 
body with their limiting values. The strength condition has the form 0σσ <e , and failure occurs when 
 

0σσ =e ,                                                                           (1) 
 
where )( ije f σσ =  and const0 =σ . The equivalent stress eσ  characterizes the internal stress state of the 
body and is a function of the stress-tensor components ijσ  in the general case. The ultimate stress 0σ  
characterizes the average mechanical properties of the body’s field and it is assumed to be a material 
constant. So 0σ  is determined under conditions of the uniform stress state (for example, in uniaxial tension 
of unnotched specimen). In the traditional approach, strength of a solid in a given point is characterized by 
the value of equivalent stress in the same point without consideration of the stress state in neighboring 
points. This is the essence of so-called local strength conditions and corresponding local fracture criteria. 
They give a good description of experimental data when macro-stress variations are small enough on 



dimensions of the order of the material structure scale. In other words, the range of application of the 
traditional approach is restricted to the cases where the dimension of the stress-uniformity zone is quite large 
to consider that const0 =σ . 
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The nonlocal strength conditions and fracture criteria have recently been developed intensively [1−5]. The 
general approaches have been elaborated and the particular problems of strength of a body containing a 
stress concentrator have been considered. The general feature of nonlocal fracture criteria consists in the 
introduction of the characteristic length into the function of equivalent stress. That allows to describe the size 
effect on the strength of a body with a stress concentrator. The ultimate stress is assumed to be a material 
constant in nonlocal criteria as well as in traditional ones. 
As a whole, the nonlocal criteria describe well the fracture initiation in the stress concentration zones. 
However, in some cases, their use gives rise to contradictory results. In particular, any small flaw located in 
a body gives rise to strength reduction according to the nonlocal fracture criteria. It is contrary to the modern 
knowledge about the real solid containing the pre-existing flaws inherent to it. Because of the inherent flaws 
existence, the small artificial flaws of the size comparable with the size of the inherent ones don’t affect on 
the strength of a body until they rich a definite (critical) size [6−8]. 
 
 
PROBLEM STATEMENT 
 
Consider a linearly elastic body of a brittle material containing an artificial flaw of a definite size and shape 
subjected to uniform loading. The following questions are formulated: What is the range of allowable 
dimensions of a flaw of a given shape, which will not lead to the reduction in the strength of a body? How 
much will be the strength reduction in case when the flaw dimensions exceed the allowable ones? 
 
 
FRACTURE CRITERION 
 
To solve this problem the approach is suggested [9], the essence of which is to assign the mechanical 
properties to a certain stressed region of finite dimensions rather than to the material as such, in contrast to 
the traditional and known nonlocal approaches. This means, in particular, that the strength of a material in 
the stress concentration zone (local strength) depends on its size. 
The size of the highly stressed region is denoted by ; if it is quite large compared to the dimensions of the 
microstructural components of the material, including the inherent flaws, i.e., the conditions of averaging of 
the mechanical properties are satisfied, the value of the local strength differs little from 

eL

0σ . On the contrary, 
if  is comparable with the dimensions of the microstructural components, their influence on the local 
strength becomes noticeable. This influence is the stronger, the smaller the size  relative to the 
characteristic length of the material . Thus, the local strength of the material should depend not only on 
the size of the highly stressed region  but also on the ratio . The fracture criterion can be stated as 
follows: The failure of a macroelement at the notch root is governed by the size of a highly stressed region to 
characteristic length of a material ratio. With allowance for this, we write the fracture criterion 
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)/,( 00 ee LLf σσ = .                                                                    (2) 

 
Consider a tensile loaded body containing a smooth symmetrical stress concentrator as a basic problem for 
determining the local-strength function )/,( 00 eLLf σ . Stress concentrator becomes a crack when ∞→tK  
(  is the stress concentration factor). Asymptotic analysis of the critical (failure) stress tK

c Lf /,( 00σσ =  behavior results in follows requirements: 
 

0σσ =c ,     for 1=tK ;                                                               (3) 
 

0const >→cσ ,     for ∞→tK .                                                        (4) 



 
The requirement (3) ensures the transition of the nonlocal to the traditional criterion in the case of the 
uniform stress state. The requirement (4) ensures the relation between the nonlocal criterion and linear 
elastic fracture mechanics (LEFM). A constant in expression (4) depends on the cracking resistance of a 
material and the crack size and shape. We present the critical size of the flaw  in the form cl
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where  is the critical size of the crack and β is a numerical parameter. The physically consistent values of 
β lie in the domain 

0l
0≥β . 

Since the local stress distribution in considered problem depends on the curvature radius of the concentrator 
to a large extent than on other geometrical parameters; therefore, in the first approximation, one can use the 
curvature radius of the concentrator ρ at a dangerous point to estimate . For estimation of , the critical 
size of the flaw l  is used. We present the function 

eL 0L

c )/,( 00 eLLf σ  in the form 
 

)/()/,( 000 ρσσ ce lfLLf = .                                                              (6) 
 
Bearing in mind that the stress concentration factor is an increasing function of ρ/l  (l is the size of the 
concentrator) 
 

)/( ρlfK tt = ,                                                                        (7) 
 
it is easy to see that it suffices to use the function  as tf )/( ρclf  to satisfy the requirements (3) and (4): 
 

)/()/( ρρ ctc lflf = .                                                                  (8) 
 
The function given by Eqn. (8) is unique because 0σσ =c  for l cl= , for any ρ. Thus, with allowance for 
Eqns. (6) and (8), the nonlocal fracture criterion takes the form 
 

)/(0 ρσσ cte lf= .                                                                     (9) 
 

Therefore, the critical stress is determined by the expression 
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be regarded as an effective stress concentration factor. 
 
 
EXAMPLES OF FRACTURE CRITERION APPLICATION 
 
A plate with an elliptic hole under tension 
The stress concentration factor can be presented in the form [10] 
 

ρα /1 lKt += ,                                                                    (10) 
 
where α is a numerical coefficient which depends on the elastic constants of a material and the dimensions 
of a plate. For an infinite isotropic plate α = 2 [10] and for an infinite orthotropic plate 

)2/(/ 1121 GEEE +−= να  [11], where 121 ,, νEE  and G are the elastic constants. The local-strength 

function ( )ρασσ /1)/,( 000 ce lLLf += . The critical stress has the form 
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0σσ =c ,     for cll ≤ .                                                              (12) 

 
The critical size l  c
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where  is the critical stress intensity factor. To obtain the lower limit for cK cσ  or  that would define the 
margin of safety, the parameter β should be taken equal to zero. If  is unknown then  is found 
experimentally. With allowance for Eqn. (10) we can write Eqn. (11) in the form 
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Eqns. (10)−(14) are also applicable to concentrators of non-elliptic shape, for which one can introduce the 
notion of equivalent elliptic hole or equivalent elliptic notch [10]. The latter concerns both flat and 
cylindrical specimens with a circumferential notch, including a V-shaped notch with a small opening angle. 
 
An isotropic plate with angled elliptic hole under tension 
Consider an isotropic plate with an elliptic hole, which is oriented at an angle ω to the direction of loading. 

The local-strength function for the basic problem in symmetric tension 
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( )ρσσ /21)/,( 000 ce lLLf += .                                                      (15) 

 
The critical stress is determined by the expression 
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where σ is the tensile stress applied to the plate. We assume that failure determined by normal tensile 
stresses, i.e., 0>= θσσ e  ( θσ  is the tangential stress on the hole boundary). The problem of cσ  
determination is to find the minimum 
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Here the well-known expression for the stress θσ  on the boundary of an elliptic hole [12] and the expression 

for the curvature radius of the hole boundary 
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the major and minor semiaxes of the ellipse; θ is the varied parameter, were used. 
 
 



COMPARISON BETWEEN PREDICTED AND EXPERIMENTAL DATA 
 
Eqns. (14) and (17) for the critical stress, which were obtained on the basis of the nonlocal fracture criterion 
(Eqn. (9)), were used to estimate the strength of a plates with a circular or elliptic hole and bars with a 
circumferential notch subjected to uniaxial tension. The results of calculations are shown in Figs. 1−3. 
 
A plate with a circular hole 
Hyakutake, Hagio and Nisitani [8] tested quasi-isotropic FRP plates containing a circular hole of a different 
diameter. The critical stress variation with respect to the hole diameter given in Eqn. (14) is plotted in Fig. 1 
(the solid curve) and compared with experimental data (points). The critical size (diameter) = 0.7 mm was 
evaluated from best-fitting data. The dashed line was obtained with the use of the traditional criterion. 
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Figure 1: Critical stress variation with hole diameter. 
 
A plate with angled elliptic hole 
Wu, Yao and Yip [13] tested PMMA plates 380 mm long, 152 mm wide and 3.2 mm thick. The semiaxes of 
the elliptic hole were a = 12.7 mm and b = 2.5 mm. The failure stress for varying ω was experimentally 
determined. Fig. 2 shows experimental data (points) and the critical stresses calculated by Eqn. (17) for β = 0 
(the solid curve). The dotted curve is calculated according to the traditional criterion. 
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Figure 2: Critical stress variation with angle ω. 



 
A bar with a circumferential notch 
Nisitani and Noguchi [14] tested cylindrical bars made of high strength steel. The specimens had a 
circumferential V-shaped notch with opening angle ψ = 60° and radius of curving ρ at the notch root. 
Specimens with notch depth a = 0.2 mm were tested by varying ρ within 0.056−2.1 mm. Fig. 3 shows the 
values of cσ  calculated by Eqn. (14), as a function of the stress concentration factor for β = 0 and β = 1 
(curves 1 and 2). Curve 1 limits from below the domain of cσ , and curve 2 approximates the experimental 
data represented by the points. As , the calculated curves approach asymptotically the value found 
in accordance with LEFM (dashed straight line). The dotted curve is calculated according to the traditional 
criterion. 
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Figure 3: Critical stress variation with stress concentration factor. 
 
The results of calculations are in good agreement with the experimental data on brittle fracture under 
conditions of stress concentration. 
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