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ABSTRACT

Analysisof inverseproblemshasalreadybeenperformedn variousfields. In mary casesassumpbnsfor
thesolutionis neededlt seemghatthe problemswhich needany assumpionscausea contradictionin the
analysis.

On the otherhand,we have developedthe discreteintegral method(DIM)utilizing the deltafunction. We
have noticedthatthe DIM is oneof the excellentschemeso solve theinverseproblemsinceit cansolwve it

withoutarny assumptias. In this paperwe attemptto applythe DIM to one-dimen®nalinverseproblems.
Namely we developeda schemefor identifying the external load distribution on a homogeneouseam
withoutarny assumpon for the solution.

Throughseveralexamplesijt is provedthatthe presenschemegivesaccurateandnaturalsoluions.
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INTRODUCTION

In the analysisof InverseProblem[1,2],mary points of issuehave beenleft yet even if problemswith
ill-conditions are excluded. One of themis concerningpresumption.This meansthat, it is necessaryo
give assumpbn informatian suchasthe shapethe number its size or position andso on, of the objectto
be treated,as suppementaryinformationfor identification. It is difficult to solve it asaninverseproblem
if severalassumpons concerningpriori informationare not defined,for the subjectto be estimateds a
unknavn existence. In addition, the unnaturalequationsmustbe usedwhen the numberof parameters
is differentfrom that of simultaneos equationswvhich works as a decidingcondition. Thesecausethe
difficulty to establisragenerakchemean theanalysisof inverseproblems For thesereasonsit isimportant
to establisha schemdor inverseproblemswithoutany assumptiasof the soluion.

In this study thefirst time, the discreteintegral methodutilizing the deltafunctionis developedandwe try
to apply this methodas one of schemego the analysisof inverseproblemby boundaryelementmethod
(BEM). It is shawn thattheidentificationis performednhaturallywithoutany assumptiasof thesoluion by



usingthe presenschemeln thisreport,the presenschemas appliedto onedimensonalinverseproblem,
namely theidentificationof externalload distributionin bendingproblemsof ahomogeneoubeam.

1. INSTITUTION OF ONE DIMENSIONAL INVERSE PROBLEM

1.1 Integral equationof bendingproblemof beamby BEM

It is corvenientfor the problemto identify externalload distribution in bendingproblemsof a beamto use
theformulation of BEM. For ahomogeneoubeamunderanexternalloadof ¢(z) asshovnin Figurel, the
equationof thedeflectioni¥ canbewrittenas|3]

L
W(s) = [-WQ* +0M* — Mo* + QW*|& + / q()W*(z, s)dx (1)
0

WhereL is thelengthof thebeam,s is the obsenationpoint,  is theslope,M is thebendingmomentand
Q is the shareforce, and parametergointedwith asterisk* arekernelfunctions Theinverseproblemin
thisreportis to identify theexternalloaddistribution appliedon beam(i.e., ¢(z) in theintegral termof right
sideof Egn.1) from the informatian of the deflectioniW (s) which is monitoredat obsenation point s as
well astheinformationof boundaryconditionsat bothendsof thebeam.
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Figurel: A homogeneoubeamwith externalloadg(x)

1.2 Discreteintegral methodutilizing the deltafunction
Herewe will explainthediscreteintegral methodutilizing the deltafunction,which formsthe basisof this
study Thefollowingintegrationis considered.

/ f(z)K (z)dz (2)

Here, K (x) is aknown function, f(z) is a functionwhich is treatedasthe target of interest(for example,
in this case,it is the function of externalload distribution), andit canbe known or unknovn value. The
function f () is usuallyapproximatedisingthe quadraticelement.Insteadof this, we approximatet using
Dirac’s deltafunction:

V" f(z) = Z P (z — ;) (3)

where V" is the n—th Nabla differential operatoy P; is the strengthof the delta function, namely the
strengthof thevirtual concentratedource z; is its appliedpositionandm is thenumberof P;.

Further afunction Z* definedasthefollowing equationis introduced:

VEZ* = K*(2) (4)



It is supposed thatthe function Z* is obtainedby analyticaloperation.By subsituting Egn.4into Eqn.2,
andby integratingit by part, the Eqn.2canfinally be written asthe following equations.Namely in the
caseof n = 2,

b b m
[ 1@k @ = [ 1@z de =192 - V2% + Y 2 @), ©)

i=1

andin thecaseof n = 4, it becomes

b b
/ (@)K (z)dz = / F@)V* 2" da
:[fV3Z*—VfV2Z*+V2fVZ*—V3fZ*]0L+ZZ*(xi)PZ- (6)
=1
We found that the given integrationis expressedy the quantitiesat the both endsof the beamandthe
strengthof the deltafunction P;, sothe domainintegral operationis never needed.

Thisschemas regardedasanew discretentegral method.andwill beintroducednto theequatiorof beam
whichis expressedy Eqn.1.

1.3 Constructionof simultaneousequationsfor inverseproblem
Following equationsare obtainedwhenthe Eqn.6is substitded into the secondierm on the right side of
Egn.1with f(z) = ¢(z) and K (z) = W*(x, s):

W(s) = [-WQ* +0M* — Mo* + QW*]¥

+[qVPZT = VgV ZT + VgV 2T = V2N + Y 72 () Py 7)
=1

In Eqn.7,the equationof BEM which givesthe deflectionis expressedisingthe strengthof deltafunction
P; (unknovn quantity). In addition to P;, therearestill the boundaryvaluesof physcal quantites (the 4
parametersf W, 6, M, () exist ateachendof thebeam sothetotalamounts 8, and4 of themaregivenby
boundaryconditions). Besidestheloaddistribution ¢ andits differentialquantityat bothendsof thebeam
remainasunknavn in theequationsTo sumup, thetotalamountof theunknonvn valuesis m + 8. To match
with thenumberof theunknavns m equationsareobtainedoy monitoring theinformationof deflectionat
them pointswherethe deltafunctionis applied. Further 4 fundamentakquations[#to solve thebending
problemof beamasa directproblemareused.For therest4 equationsthe self-interpohtedequationof ¢

q(s) = [qVY™ = VgV*]§ + > PY*(z,5), (n = 2) )

i=1

andits differential form are available. Therefore,the simutaneousequationsgeachhasa naturalform,
canbe constructedvith the necessaryyumber Whenthe simutaneousquationsaaresolved, P; andeach
unknavn quantityatbothendscanbe calculatedthen,we cancalculatetheexternalloaddistribution atany
pointof thebeamusingEqgn.8directly becausé¢hereis no unknavn valueon theright sideof theequation.

2. EXAMPLES

In this section,analysisexamplesfor modelcalculationareinstituted, andthe above identificationmethod
of externalload distribution will be verified. The exampksare calculatedand shaved by the following
rulesunlessa specialdescriptionis made:

1. Theunits: thedimensonlessguantitesareconsideredo fit any systemof units. Thelengthof beam
Lis10.



2. Theboundarycondition(B.C.): asimply supportebeamis treated.

3. The numberof points m wherethe deltafunction is appliedis 49 andthey are arrangedat even
intenvalsexceptthebothends.

4. Theordern of Nabla-operatorthe equationof n = 2 is used.

5. In all graphsthehorizontalaxisis in thelengthdirectionof beam(z axis),theverticalaxisis thevalue
of load. And, “Exact” meansexact distribution, “Present”meanspresentdistribution of identified
results.Therigidity E7 is 100in all examples.

Otherboundaryconditionandthe casefor a Nabla-operatoof ordern = 4 will bediscussedtthelast.

2.1 Identifying a concentratedoad
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Figure2: Identificationof a concentratetbad

First,the problemof a concentratetbadis treated.The valueof the concentratedbadis 1 andit is applied
at the pointof x = 7. Theresultis shavn in Figure2. From this figure, it is seenthat a sharppeak
appearsat the point of x = 7 andlarge overshmts exist nearthe peak. From this scene we canensure
thata concentratedbad existsthere.However, the peakvaluediffersvery muchfrom the exactvalueof 1.
This occursbecauséhe obtainedvalueof ¢ is expressedsa distributedload. Thereforejt is necessaryo
take attentionthatq(s) mustbeintegratedto identify the magnitudeof the concentratedbad. (This means
thatit is essentiall impossble to distinguisha concentratedoad from a distributed onein a very narrov
rangeby only onceidentificationusingthis analysisschemeBut in mostcasesthe integrationwill notbe
neededecauseracticallymostloadshave a definitedistributedrangeandthereforecanbe regardedasa
distributed one.However, it will notbementionedurther) Fromtheabove, thevalueof concentratetbad
(which may be the resultantforce of distributedloadin a very narrav range)is decidedby the following
equationin this analysisscheme:

b
G ©)
This equationcanbeintegratedeasilyby Eqn.8,andthe concreteexpressio canbe obtained.

Tablel: Calculatedoad magnitudg Exactis 1)
Integrationrange Integratedvalue

6.8 <x<T7.2 1.1423
6.6 <xr<T74 0.9511
6.4<z2<76 1.0205

0.0<z <10.0 0.9999




The magnitue of the concentratedbad which wascalculatedoy Eqn.9for resultof Figure2 is shavn in
Tablel. Thoughtheerroris alittle large in the rangedisturbedby overstoots,yet it is goodenoughasa
estimatedvalue. And, if we integrateit throughot the whole range,the value shouldbecomel because
of the equilibrium condition of the force, asshawn in the Table 1, sothe extremelyaccuratevalue canbe
obtained.

2.2 ldentifying distributedload and its re-identifying
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Figure3: Refinedidentificationof alocalizedquadratiadistributedload

Theleft graphof Figure3 is theidentifiedresultin the casethata step-shapedistributedloadwith strength
of 30 existsin therangeof 4 < z < 6. Similar to the previous example,thoughratherlarge overshoas
occurnearz = 4 andz = 6 wherethe valuechangesabruptly it is a very goodidentificationasa whole.
It seemdhatto avoid this overshoots impassible,yet the error canberestrainedo a smallenoughrange
to meetwith the neededaccurayg in practicaluse. For example,we canre-arrangdahe sourcepoint over
a narrover region wherewe suppos the load probablyexist from the first calculation,or usethe larger
numberof sourcepoint. Theright graphof Figure3 is the resultwhenwe use99 point sourceover arange
of 3 < z < 7. Comparedo theleft one,theoutlookof thestepis identifiedmoreclearlyandtheovershoas
nearthe stepbecomesmaller too.

Figure4 is theresultfor two distributedloads,namely a step-shapetinearly distributed load expressedy
q(z) = —z + 13 is appliedin therangeof 1 < z < 5, anda step-shapedonstantdistributedload with
the magnitudeof 2 is appliedin 6 < z < 9. This shavs thateachdistribution canbe identifiedwith the
accuray asgoodasthatin the casewheneachdistribution is appliedindividually.

As shavn in the above, it is provedthatthe load canbe identifiedaccuratelyby the methodof this study
withoutarny assumpbnssuchasthoseof thekind of load,thenumberof load andappliedposition.
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Figure4: Identificationof two distributedloads



2.3 Influenceof order n of Nabla-operaor and other boundaryconditions

All of theabove resultsareobtainedusingequationof n = 2. If it is donewith the equationof n = 4, the
accurayg will bebetter However, thereis not somuchdifferenceasa whole becausehe overshootneara
stepcannotbeeliminat andtheaccurayg in thecaseof n = 2 is sufficientenough.

In all mentionedexamples the simplesupportboundaryconditionis used.Figure5 is a problemwhich a
beamhasaroller atz = 0 andbefixedatz = L, theloaddistribution is shavn in the figure. Thebehaior
of theresultsis almostassameasin the (a) of Figure3. Sowe cansaythatthe differencein boundary
conditionhasno influenceto the new method.
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Figure5: Analysismodelwith anotheboundarycondition

CONCLUSIONS

In this paper the discreteintegral methodutilizing the deltafunction wasapplied,anda new schemeto

analyzethe inverseproblemusingthis methodwas demonstrated.n this report, identificationproblem
of externalload distribution on homogeneoubeamwastreatedasan exampleof onedimensonalinverse
problem. By this analysisscheme external load distribution can be identified accuratelyand naturally
withoutarny assumptinssuchasthoseof thekind of load,thenumberof load,andappliedposiion. Further

the schemes applicableto variousboundaryconditions. However, whenthe load to be identifiedis a
concentratedneor hasa steepchange the overshootappearsandthe errorsaptto becomearger round
the edgingpoint. It is possble to considera practicalschemesuchasa re-identificationusingthe resultof

thefirstidentificationto improvetheaccurag. Thisanalysisschemeanbeexpandecasilyto acontinuas
beam.

The caseghatideal condition of identification canbe instituted are treatedin this paper However, even
for thoseproblemswith more complicatedconditians, or of ill-conditions appearedn practicalcase,we
considetthateffective schemesanbe developedbasedn the consideratiorof this analysisscheme.
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